skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Origin of Universality in the Inner Edges of Planetary Systems
Abstract The characteristic orbital period of the innermost objects within the galactic census of planetary and satellite systems appears to be nearly universal, withPon the order of a few days. This paper presents a theoretical framework that provides a simple explanation for this phenomenon. By considering the interplay between disk accretion, magnetic field generation by convective dynamos, and Kelvin–Helmholtz contraction, we derive an expression for the magnetospheric truncation radius in astrophysical disks and find that the corresponding orbital frequency is independent of the mass of the host body. Our analysis demonstrates that this characteristic frequency corresponds to a period ofP∼ 3 days although intrinsic variations in system parameters are expected to introduce a factor of a ∼2–3 spread in this result. Standard theory of orbital migration further suggests that planets should stabilize at an orbital period that exceeds disk truncation by a small margin. Cumulatively, our findings predict that the periods of close-in bodies should spanP∼ 2–12 days—a range that is consistent with observations.  more » « less
Award ID(s):
2109276
PAR ID:
10428697
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
951
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L19
Size(s):
Article No. L19
Sponsoring Org:
National Science Foundation
More Like this
  1. RV Tau variables are a subclass of post-Asymptotic Giant Branch stars in binary systems surrounded by a circumbinary disk. Their signature light curves display alternating deep and shallow minima due to pulsations. The RVb-type subset exhibits an additional longer brightness modulation due to disk occultation. It has been established that binarity plays a key role in the dynamics and evolution of this short-lived post-AGB phase however the interconnection of the different physical components in these systems is still not well understood. We present multiwavelength observations of the prototypical RVb variable U Mon (mean Vmag ~6.4; D ~1 kpc)from XMM-Newton, SMA, DASCH, and AAVSO. U Mon has a pulsation period of 91.48 days and a longer brightness modulation period of 2451 days, consistent with the radial-velocity binary orbital period. We estimated the mass of the binary and the orbital semi-major axis which is consistent with the interaction of the binary with the inner edge of the circumbinary disk. U Mon hosts a 10 G magnetic field at its stellar surface which may be linked to X-rays detected by XMM-Newton. The X-ray emission is characteristic of a hot plasma (10 MK) with L/L~10. Based on our SMA observations, U Mon has a highly-inclined extended disk. From U Mon's combined DASCH and AAVSO data, there is evidence that U Mon has an even longer trend possibly due to inner-disk precession. We predict that the next deepest long-term minimum will be within the next decade. 
    more » « less
  2. Abstract We present an analysis of new multiwavelength observations of the TeV gamma-ray binary HESS J0632+057, conducted using SALT, Swift, NuSTAR, and VERITAS in 2023–2024. By combining these new data with archival observations, we confirm previous suggestions of orbital variability in the source’s X-ray spectrum, including increased X-ray absorption at the orbital phase interval ofϕ ≈ 0.3–0.4. The source’s X-ray flux within this phase interval seems to have exhibited a significant change on an orbital timescale. Additionally, occasional short-term variations in the X-ray band on a timescale of less than 3 days have been observed. The measured duration of the increased absorbing column density and the flux variability timescales can provide clues about the interaction between the putative pulsar and the Be companion’s disk if, as previously suggested, the pulsar crosses the disk at this phase interval. Moreover, the new contemporaneous X-ray and TeV observations around the pulsar-crossing phases revealed independent variability in the X-ray and TeV fluxes, contrary to a previous observation of concurrent flux increases. While these observations alone cannot provide definitive conclusions, we discuss our results in the context of pulsar–disk interaction and intrabinary shock emission scenarios. 
    more » « less
  3. Abstract We have discovered a triply eclipsing triple-star system, TIC 290061484, with the shortest known outer period,Pout, of only 24.5 days. This “eclipses” the previous record set byλTauri at 33.02 days, which held for 68 yr. The inner binary, with an orbital period ofPin= 1.8 days, produces primary and secondary eclipses and exhibits prominent eclipse timing variations with the same periodicity as the outer orbit. The tertiary star eclipses, and is eclipsed by, the inner binary with pronounced asymmetric profiles. The inclinations of both orbits evolve on observable timescales such that the third-body eclipses exhibit dramatic depth variations in TESS data. A photodynamical model provides a complete solution for all orbital and physical parameters of the triple system, showing that the three stars have masses of 6.85, 6.11, and 7.90M, radii near those corresponding to the main sequence, andTeffin the range of 21,000–23,700 K. Remarkably, the model shows that the triple is in fact a subsystem of a hierarchical 2+1+1 quadruple with a distant fourth star. The outermost star has a period of ∼3200 days and a mass comparable to the stars in the inner triple. In ∼20 Myr, all three components of the triple subsystem will merge, undergo a Type II supernova explosion, and leave a single remnant neutron star. At the time of writing, TIC 290061484 is the most compact triple system and one of the tighter known compact triples (i.e.,Pout/Pin= 13.7). 
    more » « less
  4. Abstract We analyze accretion-rate time series for equal-mass binaries in coplanar gaseous disks spanning a continuous range of orbital eccentricities up to 0.8 for both prograde and retrograde systems. The dominant variability timescales match those of previous investigations; the binary orbital period is dominant for prograde binaries withe≳ 0.1, with a 5 × longer “lump” period taking over fore≲ 0.1. This lump period fades and drops from 5 × to 4.5 × the binary period aseapproaches 0.1, where it vanishes. For retrograde orbits, the binary orbital period dominates ate≲ 0.55 and is accompanied by a 2 × longer timescale periodicity at higher eccentricities. The shape of the accretion-rate time series varies with binary eccentricity. For prograde systems, the orientation of an eccentric disk causes periodic trading of accretion between the binary components in a ratio that we report as a function of binary eccentricity. We present a publicly available tool,binlite, that can rapidly (≲0.01 s) generate templates for the accretion-rate time series onto either binary component for choice of binary eccentricity below 0.8. As an example use case, we build lightcurve models where the accretion rate through the circumbinary disk and onto each binary component sets contributions to the emitted specific flux. We combine these rest-frame, accretion-variability lightcurves with observer-dependent Doppler boosting and binary self-lensing. This allows a flexible approach to generating lightcurves over a wide range of binary and observer parameter space. We envisionbinliteas the access point to a living database that will be updated with state-of-the-art hydrodynamical calculations as they advance. 
    more » « less
  5. Abstract Close binary interactions may play a critical role in the formation of the rapidly rotating Be stars. Mass transfer can result in a mass gainer star spun up by the accretion of mass and angular momentum, while the mass donor is stripped of its envelope to form a hot and faint helium star. Far-UV spectroscopy has led to the detection of about 20 such binary Be+sdO systems. Here we report on a 3 yr program of high-quality spectroscopy designed to determine the orbital periods and physical properties of five Be binary systems. These binaries are long orbital period systems withP= 95–237 days and small semiamplitudeK1< 11 km s−1. We combined the Be star velocities with prior sdO measurements to obtain mass ratios. A Doppler tomography algorithm shows the presence of the Heiiλ4686 line in the faint spectrum of the hot companion in four of the targets. We discuss the observed line variability and show evidence of phase-locked variations in the emission profiles of HD 157832, suggesting a possible disk spiral density wave due to the presence of the companion star. The stripped companions in HD 113120 and HD 137387 may have a mass larger than 1.4M, indicating that they could be progenitors of Type Ib and Ic supernovae. 
    more » « less