skip to main content


Title: Bee diversity decreases rapidly with time since harvest in intensively managed conifer forests
Abstract

Despite widespread concerns about the anthropogenic drivers of global pollinator declines, little information is available about the impacts of land management practices on wild bees outside of agricultural systems, including in forests managed intensively for wood production. We assessed changes in wild bee communities with time since harvest in 60 intensively managed Douglas‐fir (Pseudotsuga menziesii) stands across a gradient in stand ages spanning a typical harvest rotation. We measured bee abundance, species richness, and alpha and beta diversity, as well as habitat characteristics (i.e., floral resources, nesting substrates, understory vegetation, and early seral forest in the surrounding landscape) during the spring and summer of 2018 and 2019. We found that bee abundance and species richness declined rapidly with stand age, decreasing by 61% and 48%, respectively, for every 5 years since timber harvest. Asymptotic estimates of Shannon and Simpson diversity were highest in stands 6–10 years post‐harvest and lowest after the forest canopy had closed, ~11 years post‐harvest. Bee communities in older stands were nested subsets of bee communities found in younger stands, indicating that changes were due to species loss rather than turnover as the stands aged. Bee abundance—but not species richness—was positively associated with floral resource density, and neither metric was associated with floral richness. The amount of early seral forest in the surrounding landscape seemed to enhance bee species richness in older, closed‐canopy stands, but otherwise had little effect. Changes in the relative abundance of bee species did not relate to bee functional characteristics such as sociality, diet breadth, or nesting substrate. Our study demonstrates that Douglas‐fir plantations develop diverse communities of wild bees shortly after harvest, but those communities erode rapidly over time as forest canopies close. Therefore, stand‐scale management activities that prolong the precanopy closure period and enhance floral resources during the initial stage of stand regeneration will provide the greatest opportunity to enhance bee diversity in landscapes dominated by intensively managed conifer forests.

 
more » « less
NSF-PAR ID:
10428707
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecological Applications
Volume:
33
Issue:
5
ISSN:
1051-0761
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Ongoing declines of bees and other pollinators are driven in part by the loss of critical floral resources and nesting substrates. Most conservation/restoration efforts for bees aim to enhance floral abundance and continuity but often assume the same actions will bolster nesting opportunities. Recent research suggests that habitat plantings may not always provide both forage and nesting resources. We evaluated wildflower plantings designed to augment floral resources to determine their ability to enhance nesting by soil‐nesting bees over 3 study years in Northern California agricultural landscapes. We established wildflower plantings along borders of annual row crops and paired each with an unplanted control border. We used soil emergence traps to assess nest densities and species richness of soil‐nesting bees from spring through late summer at paired field borders planted with wildflowers or maintained conventionally as bare or sparsely vegetated areas, as is typical for the region. We also quantified soil‐surface characteristics and flower resources among borders. Wildflower plantings significantly increased nest densities and the richness of bee species using them. Such benefits occurred within the first year of planting and persisted up to 4 years post establishment. The composition of nesting bee communities also differed between wildflower and unenhanced borders. Wildflower plantings differed from controls in multiple characteristics of the soil surface, including vegetation cover, surface microtopography and hardness. Surprisingly, only vegetation cover significantly affected nest densities and species richness. Wildflower plantings are a widespread habitat action with the potential to support wild bees. The demonstrated benefit wildflower plantings had for increasing the nesting of soil‐nesting bees greatly augments their relevance for the conservation of wild bee communities in agricultural and other landscapes. Identifying soil‐surface characteristics that are important for nesting provides critical information to guide the implementation and management of habitats for bees.

     
    more » « less
  2. Background The post-harvest recovery and sustained productivity of Nothofagus pumilio forests in Tierra del Fuego may be affected by the abundance and composition of ectomycorrhizal fungi (EMF). Timber harvesting alters EMF community structure in many managed forests, but the impacts of harvesting can vary with the management strategy. The implementation of variable retention (VR) management can maintain, increase, or decrease the diversity of many species, but the effects of VR on EMF in the forests of southern Patagonia have not been studied, nor has the role of EMF in the regeneration process of these forests. Methods We evaluated the effects of VR management on the EMF community associated with N. pumilio seedlings. We quantified the abundance, composition, and diversity of EMF across aggregate (AR) and dispersed (DR) retention sites within VR managed areas, and compared them to primary forest (PF) unmanaged stands. EMF assemblage and taxonomic identities were determined by ITS-rDNA sequencing of individual root tips sampled from 280 seedlings across three landscape replicates. To better understand seedling performance, we tested the relationships between EMF colonization, EMF taxonomic composition, seedling biomass, and VR treatment. Results The majority of EMF taxa were Basidiomycota belonging to the families Cortinariaceae ( n  = 29), Inocybaceae ( n  = 16), and Thelephoraceae ( n  = 8), which was in agreement with other studies of EMF diversity in Nothofagus forests. EMF richness and colonization was reduced in DR compared to AR and PF. Furthermore, EMF community composition was similar between AR and PF, but differed from the composition in DR. EMF community composition was correlated with seedling biomass and soil moisture. The presence of Peziza depressa was associated with higher seedling biomass and greater soil moisture, while Inocybe fibrillosibrunnea and Cortinarius amoenus were associated with reduced seedling biomass and lower soil moisture. Seedling biomass was more strongly related to retention type than EMF colonization, richness, or composition. Discussion Our results demonstrate reduced EMF attributes and altered composition in VR treatments relative to PF stands, with stronger impacts in DR compared to AR. This suggests that VR has the potential to improve the conservation status of managed stands by supporting native EMF in AR. Our results also demonstrate the complex linkages between retention treatments, fungal community composition, and tree growth at individual and stand scales. 
    more » « less
  3. Abstract

    As demand for wood products increases in step with global population growth, balancing the potentially competing values of biodiversity conservation, carbon storage and timber production is a major challenge. Land sparing involves conserving forest while growing timber in intensively managed areas. On the other hand, land sharing utilizes ecological forestry approaches, but with a larger management footprint due to lower yields. While the sparing‐sharing framework has been widely tested and debated in agricultural settings to balance competing values, such land‐allocation strategies have been rarely studied in forestry.

    We examined whether a sparing, sharing or Triad strategy best achieves multiple forest objectives simultaneously. In Triad, management units (stands) in forest landscapes are allocated to one of three treatments: reserve (where conservation is the sole objective), intensive (timber production is the sole objective) and ecological (both objectives are combined). To our knowledge, ours is the first Triad study from the temperate zone to quantify direct measures of biodiversity (e.g. species' abundance).

    Using a commonly utilized forest planning tool parameterized with empirical data, we modelled the capacity of a temperate rainforest to provide multiple ecosystem services (biodiversity, carbon storage, timber production and old‐growth forest structure) over 125 years based on 43 different allocation scenarios. We then quantified trade‐offs between scenarios, taking into account the landscape structure, and determined which strategies most consistently balanced ecosystem services.

    Sparing strategies were best when the services provided by both old‐growth and early seral (young) forests were prioritized, but at a cost to species associated with mid‐seral stages, which benefitted most from Triad and sharing strategies. Therefore, sparing provides the greatest net benefit, particularly given that old‐growth‐associated species and ecosystem services are currently of the greatest conservation concern.

    Synthesis and applications. We found that maximizing multiple elements of biodiversity and ecosystem services simultaneously with a single management strategy was elusive. The strategy that maximized each service and species varied greatly by both the service and the level of timber production. Fortunately, a diversity of management options can produce the same wood supply, providing ample decision space for establishing priorities and evaluating trade‐offs.

     
    more » « less
  4. Abstract

    Detailed information about the historical range of variability in wildfire activity informs adaptation to future climate and disturbance regimes. Here, we describe one of the first annually resolved reconstructions of historical (1500–1900 ce) fire occurrence in coast Douglas‐fir dominated forests of the west slope of the Cascade Range in western Oregon. Mean fire return intervals (MFRIs) across 16 sites within our study area ranged from 6 to 165 years. Variability in MFRIs was strongly associated with average maximum summer vapor pressure deficit. Fire occurred infrequently in Douglas‐fir forest stands seral to mountain hemlock or silver fir, but fire frequency was much shorter than predicted by theory in other forest types. MFRIs within Douglas‐fir stands seral to western hemlock or grand fir ranged from 19 to 45 years, and MFRIs in stands seral to Douglas‐fir ranged from 6 to 11 years. There was little synchrony in fire occurrence or tree establishment across 16 sites separated by 4 km. The lack of synchrony in fire suggests that large, wind‐driven fire events that are often considered to be characteristic of coast Douglas‐fir forests were not an important driver of succession in our study area during the last ~400–500 years. Climate was more arid than normal during fire years in most forest types, but historical fire in stands seral to Douglas‐fir was strongly associated with antecedent moisture and less strongly associated with drought. We interpret the extraordinary tempo of fire we observed in stands seral to Douglas‐fir and the unique climate pattern associated with fire in these stands to be indicative of Indigenous fire stewardship. This study provides evidence of far more frequent historical fire in coast Douglas‐fir forests than assumed by managers or scientists—including some of the most frequent fire return intervals documented in the Pacific Northwest. We recommend additional research across the western Cascades to create a comprehensive account of historical fire in highly productive forests with significant cultural, economic, and ecological importance.

     
    more » « less
  5. Abstract

    Bees require distinct foraging and nesting resources to occur in close proximity. However, spatial and temporal patterns in the availability and quantity of these resources can be affected by disturbances like wildfire. The potential for spatial or temporal separation of foraging and nesting resources is of particular concern for solitary wood‐cavity‐nesting bees as they are central‐place, short‐distance foragers once they have established their nest. Often the importance of nesting resources for bees have been tested by sampling foraging bees as a proxy, and nesting bees have rarely been studied in a community context, particularly postdisturbance. We tested how wood‐cavity‐nesting bee species richness, nesting success, and nesting and floral resources varied across gradients of wildfire severity and time‐since‐burn. We sampled nesting bees via nesting boxes within four wildfires in southwest Montana, USA, using a space‐for‐time substitution chronosequence approach spanning 3–25 years postburn and including an unburned control. We found that bee nesting success and species richness declined with increasing time postburn, with a complete lack of successful bee nesting in unburned areas. Nesting and floral resources were highly variable across both burn severity and time‐since‐burn, yet generally did not have strong effects on nesting success. Our results together suggest that burned areas may provide important habitat for wood‐cavity‐nesting bees in this system. Given ongoing fire regime shifts as well as other threats facing wild bee communities, this work helps provide essential information necessary for the management and conservation of wood‐cavity‐nesting bees.

     
    more » « less