skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rapid planning and analysis of high-throughput experiment arrays for reaction discovery
Abstract High-throughput experimentation (HTE) is an increasingly important tool in reaction discovery. While the hardware for running HTE in the chemical laboratory has evolved significantly in recent years, there remains a need for software solutions to navigate data-rich experiments. Here we have developed phactor™, a software that facilitates the performance and analysis of HTE in a chemical laboratory. phactor™ allows experimentalists to rapidly design arrays of chemical reactions or direct-to-biology experiments in 24, 96, 384, or 1,536 wellplates. Users can access online reagent data, such as a chemical inventory, to virtually populate wells with experiments and produce instructions to perform the reaction array manually, or with the assistance of a liquid handling robot. After completion of the reaction array, analytical results can be uploaded for facile evaluation, and to guide the next series of experiments. All chemical data, metadata, and results are stored in machine-readable formats that are readily translatable to various software. We also demonstrate the use of phactor™ in the discovery of several chemistries, including the identification of a low micromolar inhibitor of the SARS-CoV-2 main protease. Furthermore, phactor™ has been made available for free academic use in 24- and 96-well formats via an online interface.  more » « less
Award ID(s):
2236215
PAR ID:
10428752
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Protocol describes sampling strategies, perservation and shipping of Acropora samples for Applied Biosystems™ Axiom™ Coral Genotyping Array – 550961 (384f) Applied Biosystems™ Axiom™ Coral Genotyping Array – 550962 (Mini 96) THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION Kitchen SA, Von Kuster G, Vasquez Kuntz KL, Reich HG, Miller W, Griffin S, Fogarty ND, Baums IB (2020) STAGdb: a 30K SNP genotyping array and Science Gateway for Acropora corals and their dinoflagellate symbionts. bioRxiv 10.1101/2020.01.21.914424:2020.2001.2021.914424. doi:10.1101/2020.01.21.914424. dx.doi.org/10.17504/protocols.io.bec8jazw 
    more » « less
  2. ABSTRACT The discovery of novel thermoset shape memory polymers (TSMPs) for additive manufacturing can be accelerated through the use of a deep‐generative algorithm, minimizing the need for laborious traditional laboratory experiments. This study is the first to introduce an innovative approach that uses a deep generative learning model, namely the conditional variational autoencoder (CVAE), to discover novel TSMPs with lower glass transition temperature () and high recovery stress values (). In this study, specific chemical groups, such as epoxy, amine, thiol, and vinyl, are integrated as constraints to generate novel TSMPs while preserving the essential reaction properties. To address the challenges posed by a small dataset, the CVAE model is used with graph‐extracted features. Unlike previous studies focused on single‐polymer systems, this research extends to two‐monomer samples, discovering 22 novel TSMPs. This approach has practical implications in additive manufacturing, biomedical devices, aerospace, and robotics for the discovery of novel samples from limited data. 
    more » « less
  3. Through I-Corps™ customer discovery interviews (NSF Award 1925391), the authors determined that early and mid-career data analysts would be positively benefitted by the development and commercialization of an interactive software tool designed to assist in the selection of statistical tests for their real-world applications. The primary advantage addressed with this innovation is the concomitant reduction in time spent by data analysts in training and/or researching which statistical method to employ for a specific application. This paper details the development of the Stat Tree™ software prototype to accomplish those goals. 
    more » « less
  4. The lack of publicly available, large, and unbiased datasets is a key bottleneck for the application of machine learning (ML) methods in synthetic chemistry. Data from electronic laboratory notebooks (ELNs) could provide less biased, large datasets, but no such datasets have been made publicly available. The first real-world dataset from the ELNs of a large pharmaceutical company is disclosed and its relationship to high-throughput experimentation (HTE) datasets is described. For chemical yield predictions, a key task in chemical synthesis, an attributed graph neural network (AGNN) performs as well as or better than the best previous models on two HTE datasets for the Suzuki–Miyaura and Buchwald–Hartwig reactions. However, training the AGNN on an ELN dataset does not lead to a predictive model. The implications of using ELN data for training ML-based models are discussed in the context of yield predictions. 
    more » « less
  5. Abstract Transition metal‐catalyzed, non‐enzymatic nitrene transfer (NT) reactions to selectively transform C−H and C=C bonds to new C−N bonds are a powerful strategy to streamline the preparation of valuable amine building blocks. However, many catalysts for these reactions use environmentally unfriendly solvents that include dichloromethane, chloroform, 1,2‐dichloroethane and benzene. We developed a high‐throughput experimentation (HTE) protocol for heterogeneous NT reaction mixtures to enable rapid screening of a broad range of solvents for this chemistry. Coupled with the American Chemical Society Pharmaceutical Roundtable (ACSPR) solvent tool, we identified several attractive replacements for chlorinated solvents. Selected catalysts for NT were compared and contrasted using our HTE protocol, including silver supported byN‐dentate ligands, dinuclear Rh complexes and Fe/Mn phthalocyanine catalysts. 
    more » « less