IntroductionCompartment based models of muscle fatigue have been particularly successful in accurately modeling isometric (static) tasks or actions. However, dynamic actions, which make up most everyday movements, are governed by different central and peripheral processes, and must therefore be modeled in a manner accounting for the differences in the responsible mechanisms. In the literature, a three-component controller (3CC) muscle fatigue model (MFM) has been proposed and validated for static tasks. A recent study reported a four-compartment muscle fatigue model considering both short- and long-term fatigued states. However, neither has been validated for both static and dynamic tasks. MethodsIn this work we proposed a new four-compartment controller model of muscle fatigue with enhanced recovery (4CCr) that allows the modeling of central and peripheral fatigue separately and estimates strength decline for static and dynamic tasks. Joint velocity was used as an indicator of the degree of contribution of either mechanism. Model parameters were estimated from part of the experimental data and finally, the model was validated through the rest of experimental data that were not used for parameter estimation. ResultsThe 3CC model cannot capture the fatigue phenomenon that the velocity of contraction would affect isometric strength measurements as shown in experimental data. The new 4CCr model maintains the predictions of the extensively validated 3CC model for static tasks but provides divergent predictions for isokinetic activities (increasing fatigue with increasing velocity) in line with experimentally observed trends. This new 4CCr model can be extended to various domains such as individual muscle fatigue, motor units’ fatigue, and joint-based fatigue.
more »
« less
Joint velocity dependence of fatigue in isokinetic tasks
The ability to predict the decline in muscle strength over the course of an activity (i.e., fatigue) can be a crucial aid to task design, injury prevention, and rehabilitation efforts. Current models of muscle fatigue have been hitherto validated only for isometric contractions, but most real-world tasks are dynamic in nature, involving continuously varying joint velocities. It has previously been proposed that a three-compartment-controller (3CC) model might be used to predict fatigue for such tasks by using it in conjunction with joint- and direction-specific torque-velocity-angle (TVA) surfaces. This allows for the calculation of a time-varying target load parameter that can be used by the 3CC model, but it increases model complexity and has not been validated by experimental data. An alternative approach is proposed where the effect of joint velocity is modeled by a velocity parameter and integrated into the fatigue model equations, removing the dependence on external TVA surfaces. The predictions using both methods are contrasted against experimental data collected from 20 subjects in a series of isokinetic tests involving the knee and shoulder joints, covering a range of velocities encountered in day-to-day tasks. A much lower degree of fatigue is observed for moderate velocities compared to that for very low or very high velocities. Predictions using the integrated velocity parameter are computationally less expensive than using TVA surfaces and are also closer to experimentally obtained values. The modified fatigue model can therefore be applied to dynamic tasks with varying velocities when the task is discretized into several isokinetic tasks.
more »
« less
- PAR ID:
- 10428809
- Date Published:
- Journal Name:
- Proceedings of the 7th International Digital Human Modeling Symposium
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper predicts the optimal motion for a repetitive lifting task considering muscle fatigue. The Denavit–Hartenberg (DH) representation is employed to characterize the two-dimensional (2D) digital human model with 10 degrees-of-freedom (DOFs). Two joint-based muscle fatigue models, i.e., a three-compartment controller (3CC) muscle fatigue model (validated for isometric tasks) and a four-compartment controller with augmented recovery (4CCr) muscle fatigue model (validated for dynamic tasks), are utilized to account for the fatigue effect due to the repetitive motion. The lifting problem is formulated mathematically as an optimization problem, with the objective of minimizing dynamic effort and joint acceleration subjected to both physical and task-specific constraints. The design variables include joint angle profiles, discretized by quartic B-splines, and the control points of the profiles of the fatigue compartments associated with major body joints (spinal, shoulder, elbow, hip, and knee joints). The outcomes of the simulation encompass profiles of joint angles, joint torques, and the advancement of joint fatigue. It is notable that the profiles of joint angles and torques exhibit distinct periodic patterns. Numerical simulations and experiments with a 20 kg box reveal that the maximum predicted lifting cycles are 11 for the 3CC fatigue model and 13 for the 4CCr fatigue model while the experimental result is 13 cycles. The results indicate that the 4CCr muscle fatigue model provides enhanced accuracy over the 3CC model for predicting task duration (number of cycles) of repetitive lifting.more » « less
-
Abstract In this study, the fatigue progression and optimal motion trajectory during repetitive lifting task is predicted by using a 10 degrees of freedom (DOFs) two-dimensional (2D) digital human model and a three-compartment controller (3CC) fatigue model. The numerical analysis is further validated by conducting an experiment under similar conditions. The human is modeled using Denavit-Hartenberg (DH) representation. The task is mathematically formulated as a nonlinear optimization problem where the dynamic effort of the joints is minimized subjected to physical and task specific constraints. A sequential quadratic programming method is used for the optimization process. The design variables include control points of (1) quartic B-splines of the joint angle profiles; and (2) the three compartment sizes profiles for the six physical joints of interest — spine, shoulder, elbow, hip, knee, and ankle. Both numerical and experimental liftings are performed with a 15.2 kg box as external load. The simulation reports the human joint torque profiles and the progression of joint fatigue. The joint torque profiles show periodic trends. A maximum of 17 cycles are predicted before the repetitive lifting task fails, which also reasonably agrees with that of the experimental results (16 cycles). This formulation is also a generalized one, hence it can be used for other repetitive motion studies as well.more » « less
-
Abstract In this study, a hybrid predictive model is used to predict 3D asymmetric lifting motion and assess potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics based optimization method. The equations of motion are built by recursive Lagrangian dynamics. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the generated kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool. Muscle activation results between simulated and experimental EMG are compared to validate the model. Finally, potential lower back injuries are evaluated for a specific-weight asymmetric lifting task. The shear and compression spine loads are compared to NIOSH recommended limits. At the beginning of the dynamic lifting process, the simulated compressive spine load beyond the NIOSH action limit but less than the permissible limit. This is due to the fatigue factors considered in NIOSH lifting equation.more » « less
-
ABSTRACT Recent studies have demonstrated that muscle force is not determined solely by activation under dynamic conditions, and that length history has an important role in determining dynamic muscle force. Yet, the mechanisms for how muscle force is produced under dynamic conditions remain unclear. To explore this, we investigated the effects of muscle stiffness, activation and length perturbations on muscle force. First, submaximal isometric contraction was established for whole soleus muscles. Next, the muscles were actively shortened at three velocities. During active shortening, we measured muscle stiffness at optimal muscle length (L0) and the force response to time-varying activation and length perturbations. We found that muscle stiffness increased with activation but decreased as shortening velocity increased. The slope of the relationship between maximum force and activation amplitude differed significantly among shortening velocities. Also, the intercept and slope of the relationship between length perturbation amplitude and maximum force decreased with shortening velocity. As shortening velocities were related to muscle stiffness, the results suggest that length history determines muscle stiffness and the history-dependent muscle stiffness influences the contribution of activation and length perturbations to muscle force. A two-parameter viscoelastic model including a linear spring and a linear damper in parallel with measured stiffness predicted history-dependent muscle force with high accuracy. The results and simulations support the hypothesis that muscle force under dynamic conditions can be accurately predicted as the force response of a history-dependent viscoelastic material to length perturbations.more » « less
An official website of the United States government

