skip to main content

Title: Differentially Private Image Classification from Features
In deep learning, leveraging transfer learning has recently been shown to be an effective strategy for training large high performance models with Differential Privacy (DP). Moreover, somewhat surprisingly, recent works have found that privately training just the last layer of a pre-trained model provides the best utility with DP. While past studies largely rely on using first-order differentially private training algorithms like DP-SGD for training large models, in the specific case of privately learning from features, we observe that computational burden is often low enough to allow for more sophisticated optimization schemes, including second-order methods. To that end, we systematically explore the effect of design parameters such as loss function and optimization algorithm. We find that, while commonly used logistic regression performs better than linear regression in the non-private setting, the situation is reversed in the private setting. We find that least-squares linear regression is much more effective than logistic regression from both privacy and computational standpoint, especially at stricter epsilon values (ε < 1). On the optimization side, we also explore using Newton’s method, and find that second-order information is quite helpful even with privacy, although the benefit significantly diminishes with stricter privacy guarantees. While both methods use second-order information, least squares is more effective at lower epsilon values while Newton’s method is more effective at larger epsilon values. To combine the benefits of both methods, we propose a novel optimization algorithm called DP-FC, which leverages feature covariance instead of the Hessian of the logistic regression loss and performs well across all ε values we tried. With this, we obtain new SOTA results on ImageNet-1k, CIFAR-100 and CIFAR-10 across all values of ε typically considered. Most remarkably, on ImageNet-1K, we obtain top-1 accuracy of 88% under DP guarantee of (8, 8 ∗ 10−7) and 84.3% under (0.1, 8 ∗ 10−7).  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Larochelle, Hugo; Hadsell, Raia; Cho, Kyunghyun
Date Published:
Journal Name:
Transactions on machine learning research
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In the arena of privacy-preserving machine learning, differentially private stochastic gradient descent (DP-SGD) has outstripped the objective perturbation mechanism in popularity and interest. Though unrivaled in versatility, DP-SGD requires a non-trivial privacy overhead (for privately tuning the model’s hyperparameters) and a computational complexity which might be extravagant for simple models such as linear and logistic regression. This paper revamps the objective perturbation mechanism with tighter privacy analyses and new computational tools that boost it to perform competitively with DP-SGD on unconstrained convex generalized linear problems. 
    more » « less
  2. Recent data search platforms use ML task-based utility measures rather than metadata-based keywords, to search large dataset corpora. Requesters submit a training dataset, and these platforms search foraugmentations---join or union-compatible datasets---that, when used to augment the requester's dataset, most improve model (e.g., linear regression) performance. Although effective, providers that manage personally identifiable data demand differential privacy (DP) guarantees before granting these platforms data access. Unfortunately, making data search differentially private is nontrivial, as a single search can involve training and evaluating datasets hundreds or thousands of times, quickly depleting privacy budgets.

    We presentSaibot, a differentially private data search platform that employs Factorized Privacy Mechanism (FPM), a novel DP mechanism, to calculate sufficient semi-ring statistics for ML over different combinations of datasets. These statistics are privatized once, and can be freely reused for the search. This allows Saibot to scale to arbitrary numbers of datasets and requests, while minimizing the amount that DP noise affects search results. We optimize the sensitivity of FPM for common augmentation operations, and analyze its properties with respect to linear regression. Specifically, we develop an unbiased estimator for many-to-many joins, prove its bounds, and develop an optimization to redistribute DP noise to minimize the impact on the model. Our evaluation on a real-world dataset corpus of 329 datasets demonstrates thatSaibotcan return augmentations that achieve model accuracy within 50--90% of non-private search, while the leading alternative DP mechanisms (TPM, APM, shuffling) are several orders of magnitude worse.

    more » « less
  3. Evans, Robin J. ; Shpitser, Ilya (Ed.)
    Most existing approaches of differentially private (DP) machine learning focus on private training. Despite its many advantages, private training lacks the flexibility in adapting to incremental changes to the training dataset such as deletion requests from exercising GDPR’s right to be forgotten. We revisit a long-forgotten alternative, known as private prediction, and propose a new algorithm named Individual Kernelized Nearest Neighbor (Ind-KNN). Ind-KNN is easily updatable over dataset changes and it allows precise control of the Rényi DP at an individual user level — a user’s privacy loss is measured by the exact amount of her contribution to predictions; and a user is removed if her prescribed privacy budget runs out. Our results show that Ind-KNN consistently improves the accuracy over existing private prediction methods for a wide range of epsilon on four vision and language tasks. We also illustrate several cases under which Ind-KNN is preferable over private training with NoisySGD. 
    more » « less
  4. The ''Propose-Test-Release'' (PTR) framework is a classic recipe for designing differentially private (DP) algorithms that are data-adaptive, i.e. those that add less noise when the input dataset is nice. We extend PTR to a more general setting by privately testing data-dependent privacy losses rather than local sensitivity, hence making it applicable beyond the standard noise-adding mechanisms, e.g. to queries with unbounded or undefined sensitivity. We demonstrate the versatility of generalized PTR using private linear regression as a case study. Additionally, we apply our algorithm to solve an open problem from ''Private Aggregation of Teacher Ensembles (PATE)'' -- privately releasing the entire model with a delicate data-dependent analysis. 
    more » « less
  5. Ruiz, Francisco and (Ed.)
    Motivated by personalized healthcare and other applications involving sensitive data, we study online exploration in reinforcement learning with differential privacy (DP) constraints. Existing work on this problem established that no-regret learning is possible under joint differential privacy (JDP) and local differential privacy (LDP) but did not provide an algorithm with optimal regret. We close this gap for the JDP case by designing an $\epsilon$-JDP algorithm with a regret of $\widetilde{O}(\sqrt{SAH^2T}+S^2AH^3/\epsilon)$ which matches the information-theoretic lower bound of non-private learning for all choices of $\epsilon> S^{1.5}A^{0.5} H^2/\sqrt{T}$. In the above, $S$, $A$ denote the number of states and actions, $H$ denotes the planning horizon, and $T$ is the number of steps. To the best of our knowledge, this is the first private RL algorithm that achieves privacy for free asymptotically as $T\rightarrow \infty$. Our techniques — which could be of independent interest — include privately releasing Bernstein-type exploration bonuses and an improved method for releasing visitation statistics. The same techniques also imply a slightly improved regret bound for the LDP case. 
    more » « less