Abstract The maximum intrinsic rate of population increase (rmax) represents a population's maximum capacity to replace itself and is central to fisheries management and conservation. Species with lowerrmaxtypically have slower life histories compared to species with faster life histories and higherrmax. Here, we posit that metabolic rate is related to the fast–slow life history continuum and the connection may be stronger for maximum metabolic rate and aerobic scope compared to resting metabolic rate. Specifically, we ask whether variation inrmaxor any of its component life‐history traits – age‐at‐maturity, maximum age, and annual reproductive output – explain variation in resting and maximum metabolic rates and aerobic scope across 84 shark and teleost species, while accounting for the effects of measurement temperature, measurement body mass, ecological lifestyle, and evolutionary history. Overall, we find a strong connection between metabolic rate and the fast‐slow life history continuum, such that species with faster population growth (higherrmax) generally have higher maximum metabolic rates and broader aerobic scopes. Specifically,rmaxis more important in explaining variation in maximum metabolic rate and aerobic scope compared to resting metabolic rate, which is best explained by age‐at‐maturity (out of the life history traits examined). In conclusion, teleosts and sharks share a common fast–slow physiology/life history continuum, with teleosts generally at the faster end and sharks at the slower end, yet with considerable overlap. Our work improves our understanding of the diversity of fish life histories and may ultimately improve our understanding of intrinsic sensitivity to overfishing.
more »
« less
Individual life histories: neither slow nor fast, just diverse
The slow–fast continuum is a commonly used framework to describe variation in life-history strategies across species. Individual life histories have also been assumed to follow a similar pattern, especially in the pace-of-life syndrome literature. However, whether a slow–fast continuum commonly explains life-history variation among individuals within a population remains unclear. Here, we formally tested for the presence of a slow–fast continuum of life histories both within populations and across species using detailed long-term individual-based demographic data for 17 bird and mammal species with markedly different life histories. We estimated adult lifespan, age at first reproduction, annual breeding frequency, and annual fecundity, and identified the main axes of life-history variation using principal component analyses. Across species, we retrieved the slow–fast continuum as the main axis of life-history variation. However, within populations, the patterns of individual life-history variation did not align with a slow–fast continuum in any species. Thus, a continuum ranking individuals from slow to fast living is unlikely to shape individual differences in life histories within populations. Rather, individual life-history variation is likely idiosyncratic across species, potentially because of processes such as stochasticity, density dependence, and individual differences in resource acquisition that affect species differently and generate non-generalizable patterns across species.
more »
« less
- PAR ID:
- 10429077
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Proceedings of the Royal Society B: Biological Sciences
- Volume:
- 290
- Issue:
- 2002
- ISSN:
- 0962-8452
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Net effects of life‐history traits explain persistent differences in abundance among similar speciesAbstract Life‐history traits are promising tools to predict species commonness and rarity because they influence a population's fitness in a given environment. Yet, species with similar traits can have vastly different abundances, challenging the prospect of robust trait‐based predictions. Using long‐term demographic monitoring, we show that coral populations with similar morphological and life‐history traits show persistent (decade‐long) differences in abundance. Morphological groups predicted species positions along two, well known life‐history axes (the fast‐slow continuum and size‐specific fecundity). However, integral projection models revealed that density‐independent population growth (λ) was more variable within morphological groups, and was consistently higher in dominant species relative to rare species. Within‐group λ differences projected large abundance differences among similar species in short timeframes, and were generated by small but compounding variation in growth, survival, and reproduction. Our study shows that easily measured morphological traits predict demographic strategies, yet small life‐history differences can accumulate into large differences in λ and abundance among similar species. Quantifying the net effects of multiple traits on population dynamics is therefore essential to anticipate species commonness and rarity.more » « less
-
Gray, David A (Ed.)The lifetime fitness of an individual is determined by the integrated results of survival and reproduction. Improving our understanding of variation in survival senescence within and between species will therefore provide greater insight into the evolution of different life history strategies. Survival is influenced by multiple factors, consequently, variation in patterns of senescence is expected between individuals and sexes and across mating systems and the continuum of life history strategies. To date there is little consensus regarding the mechanisms driving the evolution of sex differences in actuarial senescence, necessitating the need for studies of sex-specific senescence for species across a wide range of life histories. The Weddell seal is a species of long-lived mammal that displays moderate polygyny and little sexual size dimorphism, which makes it an unusual species compared to other long-lived mammals that share the polygynous mating system. Here we used 37 years of data for 1,879 female and 1,474 male Weddell seals from Erebus Bay, Antarctica, to estimate and compare sex-specific patterns of survival rates using basis splines which allow flexible modeling of age-specific patterns. We found that males had lower rates of survival throughout life and higher rates of actuarial senescence after early adulthood compared to females. These results add to our understanding of sex-specific survival rates in the species and contribute information for a long-lived, polygynous species that should aid in achieving a broader understanding of aging between sexes and across the tree of life.more » « less
-
Abstract Organisms of all species must balance their allocation to growth, survival and recruitment. Among tree species, evolution has resulted in different life‐history strategies for partitioning resources to these key demographic processes. Life‐history strategies in tropical forests have often been shown to align along a trade‐off between fast growth and high survival, that is, the well‐known fast–slow continuum. In addition, an orthogonal trade‐off has been proposed between tall stature—resulting from fast growth and high survival—and recruitment success, that is, a stature−recruitment trade‐off. However, it is not clear whether these two independent dimensions of life‐history variation structure tropical forests worldwide.We used data from 13 large‐scale and long‐term tropical forest monitoring plots in three continents to explore the principal trade‐offs in annual growth, survival and recruitment as well as tree stature. These forests included relatively undisturbed forests as well as typhoon‐disturbed forests. Life‐history variation in 12 forests was structured by two orthogonal trade‐offs, the growth−survival trade‐off and the stature−recruitment trade‐off. Pairwise Procrustes analysis revealed a high similarity of demographic relationships among forests. The small deviations were related to differences between African and Asian plots.Synthesis. The fast–slow continuum and tree stature are two independent dimensions structuring many, but not all tropical tree communities. Our discovery of the consistency of demographic trade‐offs and life‐history strategies across different forest types from three continents substantially improves our ability to predict tropical forest dynamics worldwide.more » « less
-
Abstract Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees in a primary, neotropical forest. We classified trees along two life history axes: afast–slowaxis characterized by a growth–survival trade‐off, and astature–recruitmentaxis with tall,long‐lived pioneersat one end and short,short‐lived recruitersat the other.Relative abundance, richness, productivity and light interception follow an approximate power law, systematically shifting over an order of magnitude with tree size.Slowsaplings dominate the understorey, butslowtrees decline to parity with rapidly growingfastandlong‐lived pioneerspecies in the canopy.Like the community as a whole,slowspecies are the closest to obeying the energy equivalence rule (EER)—with equal productivity per size class—but other life histories strongly increase productivity with tree size. Productivity is fuelled by resources, and the scaling of light interception corresponds to the scaling of productivity across life history strategies, withslowandallspecies near solar energy equivalence. This points towards a resource‐use corollary to the EER: the resource equivalence rule.Fitness trade‐offs associated with tree size and life history may promote coexistence in tropical forests by limiting niche overlap and reducing fitness differences.Synthesis. Tree life history strategies describe the different ways trees grow, survive and recruit in the understorey. We show that the proportion of trees with a pioneer life history strategy increases steadily with tree size, as pioneers become relatively more abundant, productive, diverse and capture more resources towards the canopy. Fitness trade‐offs associated with size and life history strategy offer a mechanism for coexistence in tropical forests.more » « less
An official website of the United States government

