We report the excited-state behavior of a structurally simple bis -sulfoxide complex, cis -S,S-[Ru(bpy) 2 (dmso) 2 ] 2+ , as investigated by femtosecond pump–probe spectroscopy. The results reveal that a single photon prompts phototriggered isomerization of one or both dmso ligands to yield a mixture of cis -S,O-[Ru(bpy) 2 (dmso) 2 ] 2+ and cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ . The quantum yields of isomerization of each product and relative product distribution are dependent upon the excitation wavelength, with longer wavelengths favoring the double isomerization product, cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ . Transient absorption measurements on cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ do not reveal an excited-state isomerization pathway to produce either the S,O or S,S isomers. Femtosecond pulse shaping experiments reveal no change in the product distribution. Pump–repump–probe transient absorption spectroscopy of cis -S,S-[Ru(bpy) 2 (dmso) 2 ] 2+ shows that a pump–repump time delay of 3 ps dramatically alters the S,O : O,O product ratio; pump–repump–probe transient absorption spectroscopy of cis -O,O-[Ru(bpy) 2 (dmso) 2 ] 2+ with a time delay of 3 ps uncovers an excited-state isomerization pathway to produce the S,O isomer. In conjunction with low-temperature steady-state emission spectroscopy, these results are interpreted in the context of an excited-state bifurcating pathway, in which the isomerization product distribution is determined not by thermodynamics, but rather as a dynamics driven reaction.
more »
« less
Photocrystallography of [Ru(bpy) 2 (dmso) 2 ] 2+ reveals an O-bonded metastable state
We report the first instance of observing the phototriggered isomerization of dmso ligands on a bis sulfoxide complex, [Ru(bpy) 2 (dmso) 2 ], in the crystalline solid state. The solid-state UV-vis spectrum of the crystal demonstrates an increase in optical density around 550 nm after irradiation, which is consistent with the solution isomerization results. Digital images of the crystal before and after irradiation display a notable color change (pale orange to red) and cleavage occurs along planes, (1̄01) and (100), during irradiation. Single crystal X-ray diffraction data also confirms that isomerization is occurring throughout the lattice and a structure that contains a mix of the S , S and O , O / S , O isomer was attained from a crystal irradiated ex situ . In situ irradiation XRD studies reveal that the percentage of the O-bonded isomer increases as a function of 405 nm exposure time.
more »
« less
- PAR ID:
- 10429087
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Chemical Science
- ISSN:
- 2041-6520
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Energetically low-lying structural isomers of the much-studied thiolate-protected gold cluster Au 25 (SR) 18 − are discovered from extensive (80 ns) molecular dynamics (MD) simulations using the reactive molecular force field ReaxFF and confirmed by density functional theory (DFT). A particularly interesting isomer is found, which is topologically connected to the known crystal structure by a low-barrier collective rotation of the icosahedral Au 13 core. The isomerization takes place without breaking of any Au–S bonds. The predicted isomer is essentially iso-energetic with the known Au 25 (SR) 18 − structure, but has a distinctly different optical spectrum. It has a significantly larger collision cross-section as compared to that of the known structure, which suggests it could be detectable in gas phase ion-mobility mass spectrometry.more » « less
-
Azobenzene-based chiral dopants in cholesteric liquid crystals are of interest since the properties they induce in the liquid crystal could be tuned photochemically. Here, we use a substituted binaphthyl with a halogenated azobenzene as a chiral dopant to induce a photoswitchable cholesteric phase in the nematic 4-n-pentyl-4’-cyanobiphenyl. The azobenzene group chemically attached to the chiral dopant undergoes isomerization from trans to cis upon irradiation with green light (wavelength 535 nm), and from cis to trans upon irradiation with blue light (wavelength 450 nm). The transition between the two isomers causes helicity inversion of the cholesteric, with a left-handed trans isomer and a right-handed cis isomer. We report on the kinetics of photoisomerization of both processes (trans-to-cis and cis-to-trans) in the nematic host by following the pitch evolution over time. We show that the kinetic mechanism corresponds to a two-step process: a first-order isomerization followed by a second-order autocatalytic isomerization. This mechanism differs from the typical first-order kinetics for cis-to-trans or trans-to-cis isomerization in azobenzenes. The autocatalytic process is attributed to interactions between the chiral dopant and the nematic host.more » « less
-
Solid state compounds which exhibit non-centrosymmetric crystal structures are of great interest due to the physical properties they can exhibit. The ‘hybrid improper’ mechanism – in which two non-polar distortion modes couple to, and stabilize, a further polar distortion mode, yielding an acentric crystal structure – offers opportunities to prepare a range of novel non-centrosymmetric solids, but examples of compounds exhibiting acentric crystal structures stabilized by this mechanism are still relatively rare. Here we describe a series of bismuth-containing layered perovskite oxide phases, RbBiNb 2 O 7 , LiBiNb 2 O 7 and NaBiNb 2 O 7 , which have structural frameworks compatible with hybrid-improper ferroelectricity, but also contain Bi 3+ cations which are often observed to stabilize acentric crystal structures due to their 6s 2 electronic configurations. Neutron powder diffraction analysis reveals that RbBiNb 2 O 7 and LiBiNb 2 O 7 adopt polar crystal structures (space groups I 2 cm and B 2 cm respectively), compatible with stabilization by a trilinear coupling of non-polar and polar modes. The Bi 3+ cations present are observed to enhance the magnitude of the polar distortions of these phases, but are not the primary driver for the acentric structure, as evidenced by the observation that replacing the Bi 3+ cations with Nd 3+ cations does not change the structural symmetry of the compounds. In contrast the non-centrosymmetric, but non-polar structure of NaBiNb 2 O 7 (space group P 2 1 2 1 2 1 ) differs significantly from the centrosymmetric structure of NaNdNb 2 O 7 , which is attributed to a second-order Jahn-Teller distortion associated with the presence of the Bi 3+ cations.more » « less
-
null (Ed.)Single-crystal nanooptomechanical transduction occurs in [Ru(SO 2 )(NH 3 ) 4 (H 2 O)]chlorobenzenesulfonate 2 , reaching maximal levels within 40 s at 100 K when photostimulated by 505 nm light. Its in situ light-induced crystal structure reveals the molecular origins of this optical actuation: 26.0(3)% of the η 1 -SO 2 ligand photoconverts into an η 1 -OSO photoisomer which, in turn, induces a 49.6(9)° arene ring rotation in its neighbouring counter ion.more » « less
An official website of the United States government
