skip to main content


Title: Concurrent Reduction and Stabilization of Graphene Oxide Dispersion by Silk-Inspired Polymer
Silk, a popular biomaterial is used as a greener alternative of toxic reducing agent in biocompatible graphene synthesis. However, silk often forms gel uncontrollably due to its heavy chain molecular weight, and faces significant challenges in the reduction, stabilization, and dispersion process of graphene. In this contribution, we report a rapid chemical synthesis approach for a low molecular weight silk-inspired polymer via ring opening and microwave-assisted Diels-Alder aided step-growth polymerizations. This synthetic polymer with periodic sequences of hydrophilic and hydrophobic moieties not only reduces graphene oxide (GO) efficiently but enhances the dispersibility of hydrophobic reduced GO (rGO) in aqueous media.  more » « less
Award ID(s):
2138438
NSF-PAR ID:
10429112
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACS applied polymer materials
ISSN:
2637-6105
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Silk fibroin adsorption at the heterogeneous hydrophobic–hydrophilic surface of graphene oxide (GO) with different degrees of oxidation is addressed experimentally and theoretically. Samples are prepared using various spin‐assisted deposition conditions relevant to assembly of laminated nanocomposites from graphene‐based components, and compared with silicon dioxide (SiO2) as a benchmark substrate. Secondary structure of silk backbones changes as a function of silk fibroin concentration, substrate chemical composition, and deposition dynamics are assessed and compared with molecular dynamic simulations. It is observed that protofibrils form at low concentrations while variance in the deposition speed has little effect on silk secondary structure and morphology. However, balance of nonbonded interactions between electrostatic and van der Waals contributions can lead to silk secondary structure retention on the GO surface. Molecular dynamics simulations of silk fibroin at different surfaces show that strong van der Waals interactions play a pivotal role in losing and disrupting secondary structure on graphene and SiO2surfaces. Fine tuning silk fibroin structure on heterogeneous graphene‐based surfaces paves the way toward development of biomolecular reinforcement for biopolymer–graphene laminated nanocomposites.

     
    more » « less
  2. This study employs all-atomistic (AA) molecular dynamics (MD) simulations to investigate the crystallization and melting behavior of polar and nonpolar polymer chains on monolayers of graphene and graphene oxide (GO). Polyvinyl alcohol (PVA) and polyethylene (PE) are used as representative polar and nonpolar polymers, respectively. A modified order parameter is introduced to quantify the degree of two-dimensional (2D) crystallization of polymer chains. Our results show that PVA and PE chains exhibit significantly different crystallization behavior. PVA chains tend to form a more rounded, denser, and folded-stemmed lamellar structure, while PE chains tend to form an elongated straight pattern. The presence of oxidation groups on the GO substrate reduces the crystallinity of both PVA and PE chains, which is derived from the analysis of modified order parameter. Meanwhile, the crystallization patterns of polymer chains are influenced by the percentage, chemical components, and distribution of the oxidation groups. In addition, our study reveals that 2D crystalized polymer chains exhibit different melting behavior depending on their polarity. PVA chains exhibit a more molecular weight-dependent melting temperature than PE chains, which have a lower melting temperature and are relatively insensitive to molecular weight. These findings highlight the critical role of substrate and chain polarity in the crystallization and melting of polymer chains. Overall, our study provides valuable insights into the design of graphene-based polymer heterostructures and composites with tailored properties. 
    more » « less
  3. Graphene oxide/polymer composite water filtration membranes were developed via coalescence of graphene oxide (GO) stabilized Pickering emulsions around a porosity-generating polymer. Triptycene poly(ether ether sulfone)-CH2NH2:HCl polymer interacts with the GO at the water−oil interface, resulting in stable Pickering emulsions. When they are deposited and dried on polytetrafluoroethylene substrate, the emulsions fuse to form a continuous GO/polymer composite membrane. X-ray diffraction and scanning electron microscopy demonstrate that the intersheet spacing and thickness of the membranes increased with increasing polymer concentration, confirming the polymer as the spacer between the GO sheets. The water filtration capability of the composite membranes was tested by removing Rose Bengal from water, mimicking separations of weak black liquor waste. The composite membrane achieved 65% rejection and 2500 g m−2 h−1 bar−1. With high polymer and GO loading, composite membranes give superior rejection and permeance performance when compared with a GO membrane. This methodology for fabrication membranes via GO/polymer Pickering emulsions produces membranes with a homogeneous morphology and robust chemical separation strength. 
    more » « less
  4. Two-dimensional, graphene-based materials have attracted great attention as a new membrane building block, primarily owing to their potential to make the thinnest possible membranes and thus provide the highest permeance for effective sieving, assuming comparable porosity to conventional membranes and uniform molecular-sized pores. However, a great challenge exists to fabricate large-area, single-layered graphene or graphene oxide (GO) membranes that have negligible undesired transport pathways, such as grain boundaries, tears, and cracks. Therefore, model systems, such as a single flake or nanochannels between graphene or GO flakes, have been studied via both simulations and experiments to explore the transport mechanisms and separation potential of graphene-based membranes. This article critically reviews literature related to single- to few-layered graphene and GO membranes, from material synthesis and characteristics, fundamental membrane structures, and transport mechanisms to potential separation applications. Knowledge gaps between science and engineering in this new field and future opportunities for practical separation applications are also discussed. 
    more » « less
  5. As the average life expectancy continues to increase, so does the need for resorbable materials designed to treat, augment, or replace components and functions of the body. Naturally occurring biopolymers such as silks are already attractive candidates due to natural abundance and high biocompatibility accompanied by physical properties which are easily modulated through blending with another polymer. In this paper, the authors report on the fabrication of biocomposite materials made from binary blends of Bombyx mori silk fibroin (SF) protein and renewably sourced low molecular weight nylon 610 and high molecular weight nylon 1010. Films were characterized using scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Results of this study demonstrated that enhanced structural and thermal properties were achievable in composite films SF-N610/N1010 due to their chemical similarity and the possible formation of hydrogen bonds between nylon and silk molecular chains. This study provides useful insight into the sustainable design of functional composite materials for biomedical and green technologies. 
    more » « less