skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Designing for Student Understanding of Learning Analytics Algorithms
Students use learning analytics systems to make day-to-day learning decisions, but may not understand their potential flaws. This work delves into student understanding of an example learning analytics algorithm, Bayesian Knowledge Tracing (BKT), using Cognitive Task Analysis (CTA) to identify knowledge components (KCs) comprising expert student understanding. We built an interactive explanation to target these KCs and performed a controlled experiment examining how varying the transparency of limitations of BKT impacts understanding and trust. Our results show that, counterintuitively, providing some information on the algorithm’s limitations is not always better than providing no information. The success of the methods from our BKT study suggests avenues for the use of CTA in systematically building evidence-based explanations to increase end user understanding of other complex AI algorithms in learning analytics as well as other domains.  more » « less
Award ID(s):
1849984
PAR ID:
10429162
Author(s) / Creator(s):
; ;
Editor(s):
Wang, N.; Rebolledo-Mendez, G.; Matsuda, N.; Santos, O.C.; Dimitrova, V.
Date Published:
Journal Name:
Artificial Intelligence in Education. AIED 2023. Lecture Notes in Computer Science
Volume:
13916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  2. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  3. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in mathematics, is a well-established and proven approach in learning analytics. In this work, we report on our analysis examining the generalizability of BKT models across academic years attributed to "detector rot." We compare the generalizability of Knowledge Training (KT) models by comparing model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curricula available through Open Educational Resources. We observed that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing models are relatively stable in terms of performance across academic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evidence in this paper, we posit that learning platforms leveraging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  4. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in math- ematics, is a well-established and proven approach in learn- ing analytics. In this work, we report on our analysis exam- ining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the gen- eralizability of Knowledge Training (KT) models by com- paring model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curric- ula available through Open Educational Resources. We ob- served that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing mod- els are relatively stable in terms of performance across aca- demic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evi- dence in this paper, we posit that learning platforms lever- aging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less
  5. The use of Bayesian Knowledge Tracing (BKT) models in predicting student learning and mastery, especially in math- ematics, is a well-established and proven approach in learn- ing analytics. In this work, we report on our analysis exam- ining the generalizability of BKT models across academic years attributed to ”detector rot.” We compare the gen- eralizability of Knowledge Training (KT) models by com- paring model performance in predicting student knowledge within the academic year and across academic years. Models were trained on data from two popular open-source curric- ula available through Open Educational Resources. We ob- served that the models generally were highly performant in predicting student learning within an academic year, whereas certain academic years were more generalizable than other academic years. We posit that the Knowledge Tracing mod- els are relatively stable in terms of performance across aca- demic years yet can still be susceptible to systemic changes and underlying learner behavior. As indicated by the evi- dence in this paper, we posit that learning platforms lever- aging KT models need to be mindful of systemic changes or drastic changes in certain user demographics. 
    more » « less