skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tribocatalytically-active nickel/cobalt phosphorous films for universal protection in a hydrocarbon-rich environment
Abstract High-contact stresses generated at the sliding interfaces during their relative movement provide a unique combination of local heating and shear- and load-induced compression conditions. These conditions, when involving the sliding of surfaces with certain material characteristics, may facilitate tribochemical reactions with the environment, leading to the formation of a protective, damage-suppressing tribofilm directly at the contact. Here, we employ the electrodeposition process to design a coating composed of a hard cobalt-phosphorous matrix with the inclusion of tribocatalytically-active nickel clusters. The coating is optimized in terms of its relative composition and mechanical characteristics. We demonstrate the excellent tribological performance of the coating in the presence of a hydrocarbon environment, both in the form of a liquid lubricant and as a hydrocarbon-saturated vapor. Characterization of the wear track indicates that the origin of such performance lies in the formation of a protective carbon-based tribofilm on the surface of the coating during sliding. These results contribute to the advancement of knowledge on material transformations in the contact, thus providing a robust and versatile approach to addressing tribological challenges in mechanical systems.  more » « less
Award ID(s):
2018132
PAR ID:
10429300
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Minimizing the wear of the surfaces exposed to mechanical shear stresses is a critical challenge for maximizing the lifespan of rotary mechanical parts. In this study, we have discovered the anti-wear capability of a series of metal nitride-copper nanocomposite coatings tested in a liquid hydrocarbon environment. The results indicate substantial reduction of the wear in comparison to the uncoated steel substrate. Analysis of the wear tracks indicates the formation of carbon-based protective films directly at the sliding interface during the tribological tests. Raman spectroscopy mapping of the wear track suggests the amorphous carbon (a-C) nature of the formed tribofilm. Further analysis of the tribocatalytic activity of the best coating candidate, MoN-Cu, as a function of load (0.25–1 N) and temperature (25 °C and 50 °C) was performed in three alkane solutions, decane, dodecane, and hexadecane. Results indicated that elevated temperature and high contact pressure lead to different tribological characteristics of the coating tested in different environments. The elemental energy dispersive x-ray spectroscopy analysis and Raman analysis revealed formation of the amorphous carbon film that facilitates easy shearing at the contact interface thus enabling more stable friction behavior and lower wear of the tribocatalytic coating. These findings provide new insights into the tribocatalysis mechanism that enables the formation of zero-wear coatings. 
    more » « less
  2. Protective coatings are important for enhancing tribological behavior, preventing surface degradation, and reducing friction-induced energy losses during the operation of mechanical systems. Recently, tribocatalytically driven formation of protective carbon films at the contact interface has been demonstrated as a viable approach for repairing and extending the lifetime of protective coatings. Here, we study the effect of catalytic metals, specifically their composition and amount, on the tribocatalysis process. To achieve this, we test the tribological performance of electro-deposited amorphous CoNiP and CoCuP coatings in different hydrocarbon-rich environments. Our results indicate that the tribocatalytic repair of wear-induced damage is optimal when Ni and Cu are included in the Co-P matrix at 5 wt% Ni and 7 wt% Cu, respectively. Characterization of the wear tracks suggests that among the considered samples, the tribofilms formed on the surface of Co7CuP have the highest concentration of graphitic carbon, leading to a more significant reduction in the COF and wear rate. The carbon tribofilm formation was more pronounced in decane and synthetic oil than in ethanol, which is attributed to the difference in the length of the hydrocarbon molecules affecting viscosity and the lubricant film thickness during boundary lubrication sliding. 
    more » « less
  3. Extreme pressure (EP) lubricant additives form protective tribofilms at the site of contact using the heat and pressure of contact and relative motion. Common EP additives contain undesirable elements such as phosphorus and sulfur. A novel EP lubricant additive, which contains no phosphorus and sulfur, is presented for generating lubricious carbon films. The additive consists of a surface-active molecule with a metastable cycloalkane ring, which dissociates readily during tribological contact to form lubricious carbon films. Friction and wear performance of PAO4 with this additive under a range of loads and speeds was shown to be superior to that without the additive. Optical and scanning electron microscopy and Raman spectroscopy were used to analyze the tribofilms formed on post-test contact surfaces, providing direct evidence for the formation of carbon films. Quantitative kinetics for the carbon tribofilm formation was analyzed as a function of temperature and stress, from which the activation energy for carbon tribofilm formation was obtained. 
    more » « less
  4. Abstract Atomic force microscopy (AFM) provides the opportunity to perform fundamental and mechanistic observations of complex, dynamic, and transient systems and ultimately link material microstructure and its evolution during tribological interactions. This investigation focuses on the evolution of a dynamic fluoropolymer tribofilm formed during sliding of polytetrafluoroethylene (PTFE) mixed with 5 wt% alpha-phase alumina particles against 304L stainless steel. Sliding was periodically interrupted for AFM topography scans. The average film roughness, the average friction coefficient, and polymer wear rate based on sample height recession were recorded as a function of increasing sliding cycles. Topographical maps suggested tribofilm nucleates in grooves of the steel countersample, spreads, and develops into a uniform film through sliding. Prominent nanoscale features were visible around 10,000 sliding cycles and thereafter. Scanning electron microscopy and energy-dispersive X-ray spectroscopy showed good correlations between these features and aluminum-rich domains, suggesting the presence of alumina particles on the surface. 
    more » « less
  5. Metallic friction materials currently used in industry may adversely impact the environment. Substitutions for metals in friction materials, on the other hand, can introduce operational safety issues and other unforeseeable problems such as thermal-mechanical instabilities. In this work, a molecular dynamics model has been developed for investigating the effects of material composition, density, and surface asperities on the tribological properties of inorganic 3C-SiC under various contact conditions at the atomic level. Predictions on the following results have been made: (1) elastic modulus, (2) tensile strength, (3) thermal conductivity, and (4) friction coefficient. The research findings can help improve the design of metal-free friction materials against thermal-mechanical failures. Parametric studies were performed by varying a number of conditions including (1) ambient temperature, (2) sliding speed, (3) crystal orientation, (4) asperity size, (5) degree of asperity intersection, (6) types of loading, and (7) surface contact. Plastic deformation and material transfer were successfully modeled between two sliding pairs. Some of the computational results were validated against existing experimental data found in the literature. The evaluation of wear rate was also incorporated. The model can easily be extended to deal with other nonmetallic friction composites. 
    more » « less