skip to main content

This content will become publicly available on March 30, 2024

Title: Additive manufacturing of polyaniline blends for lightweight structures with tunable conductivity
Printable feedstocks that can produce lightweight, robust, and ductile structures with tunable and switchable conductivity are of considerable interest for numerous application spaces. Combining the specific properties of commodity thermoplastics with the unique electrical and redox properties of conducting polymers (CPs) presents new opportunities for the field of printed (bio)electronics. Here, we report on the direct ink write (DIW) printing of ink formulations based on polyaniline-dinonylnaphthalene sulfonic acid (PANI-DNNSA), which has been synthesized in bulk quantities (∼400 g). DNNSA imparts solubility to PANI up to 50 mg mL −1 , which allows the use of various additives to tune the rheological behavior of the inks without significantly compromising the electrical properties of the printed structures, which reach conductivities in the range of <10 −7 –10 0 S cm −1 as a function of ink formulation and post treatment used. Fumed silica (FS) and ultra-high molecular weight polystyrene (UHMW-PS) additives are leveraged to endow printability and shape retention to inks, as well as to compare the use of traditional rheological modifiers with commodity thermoplastics on CP feedstocks for tailored DIW printing. We show that the incorporation of UHMW-PS into these ink formulations is critical for obtaining high crack resistance in printed structures. This work serves as a guide for future ink designs of CPs with commodity thermoplastics and their subsequent DIW printing to yield conductive architectures and devices for various applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Page Range / eLocation ID:
4404 to 4414
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Levoglucosan is a renewable chemical obtained in high yields from pyrolysis of cellulosic biomass, which offers rich functionality for synthetic modification and crosslinking. Here, we report the facile and scalable synthesis of a family of biobased networks from triallyl levoglucosan and multifunctional thiols via UV-initiated thiol–ene click chemistry. The multifunctional thiols utilized in this study can also be sourced from renewable feedstocks, leading to overall high bio-based content of the synthesized levoglucosan networks. The thermomechanical and hydrolytic degradation properties of the resultant networks are tailored based on the type and stoichiometric ratio of thiol crosslinker employed. The Young's modulus and glass transition temperature of levoglucosan-based networks are tunable over the wide ranges of 3.3 MPa to 14.5 MPa and −19.4 °C to 6.9 °C, respectively. The levoglucosan-based thermosets exhibit excellent thermal stability with Td,10% > 305 °C for all networks. The suitability of these resin formulations for extrusion-based 3D printing was illustrated using a UV-assisted direct ink write (DIW) system creating 3D printed parts with excellent fidelity. Hydrolytic degradation of these 3D printed parts via ester hydrolysis demonstrated that levoglucosan-based resins are excellent candidates for sustainable rapid prototyping and mass production applications. Overall, this work displays the utility of levoglucosan as a renewable platform chemical that enables access to tailored thermosets important in applications ranging from 3D printing to biomaterials. 
    more » « less
  2. Abstract

    Direct ink writing (DIW) has demonstrated great potential as a multimaterial multifunctional fabrication method in areas as diverse as electronics, structural materials, tissue engineering, and soft robotics. During DIW, viscoelastic inks are extruded out of a 3D printer's nozzle as printed fibers, which are deposited into patterns when the nozzle moves. Hence, the resolution of printed fibers is commonly limited by the nozzle's diameter, and the printed pattern is limited by the motion paths. These limits have severely hampered innovations and applications of DIW 3D printing. Here, a new strategy to exceed the limits of DIW 3D printing by harnessing deformation, instability, and fracture of viscoelastic inks is reported. It is shown that a single nozzle can print fibers with resolution much finer than the nozzle diameter by stretching the extruded ink, and print various thickened or curved patterns with straight nozzle motions by accumulating the ink. A quantitative phase diagram is constructed to rationally select parameters for the new strategy. Further, applications including structures with tunable stiffening, 3D structures with gradient and programmable swelling properties, all printed with a single nozzle are demonstrated. The current work demonstrates that the mechanics of inks plays a critical role in developing 3D printing technology.

    more » « less
  3. Three-dimensional printing (3DP) of functional materials is increasingly important for advanced applications requiring objects with complex or custom geometries or prints with gradients or zones with different properties. A common 3DP technique is direct ink writing (DIW), in which printable inks are comprised of a fluid matrix filled with solid particles, the latter of which can serve a dual purpose of rheology modifiers to enable extrusion and functional fillers for performance-related properties. Although the relationship between filler loading and viscosity has been described for many polymeric systems, a thorough description of the rheological properties of three-dimensional (3D) printable composites is needed to expedite the creation of new materials. In this manuscript, the relationship between filler loading and printability is studied using model paraffin/photopolymer composite inks containing between 0 and 73 vol. % paraffin microbeads. The liquid photopolymer resin is a Newtonian fluid, and incorporating paraffin microbeads increases the ink viscosity and imparts shear-thinning behavior, viscoelasticity, and thixotropy, as established by parallel plate rheometry experiments. Using Einstein and Batchelor's work on colloidal suspension rheology, models were developed to describe the thixotropic behavior of inks, having good agreement with experimental results. Each of these properties contributes to the printability of highly filled ([Formula: see text]43 vol. % paraffin) paraffin/photopolymer composite inks. Through this work, the ability to quantify the ideal rheological properties of a DIW ink and to selectively control and predict its rheological performance will facilitate the development of 3D printed materials with tunable functionalities, thus, advancing 3DP technology beyond current capabilities. 
    more » « less
  4. Screen printing is a promising route towards high throughput printed electronics. Currently, the preparation of nanomaterial based conductive inks involves complex formulations with often toxic surfactants in the ink's composition, making them unsuitable as an eco-friendly printing technology. This work reports the development of a silver nanowire (AgNW) ink with a relatively low conductive particle loading of 7 wt%. The AgNW ink involves simple formulation and comprises a biodegradable binder and a green solvent with no toxic surfactants in the ink formulation, making it an eco-friendly printing process. The formulated ink is suitable for printing on a diverse range of substrates such as polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), polyimide (PI) tape, glass, and textiles. By tailoring the rheological behaviour of the ink and developing a one-step post-printing process, a minimum feature size of 50 μm and conductivity as high as 6.70 × 10 6 S m −1 was achieved. Use of a lower annealing temperature of 150 °C makes the process suitable for plastic substrates. A flexible textile heater and a wearable hydration sensor were fabricated using the reported AgNW ink to demonstrate its potential for wearable electronic applications. 
    more » « less
  5. Abstract

    Vat photopolymerization (VP) and direct ink write (DIW) additive manufacturing (AM) provide complex geometries with precise spatial control employing a vast array of photo‐reactive polymeric systems. Although VP is recognized for superior resolution and surface finish, DIW provides versatility for higher viscosity systems. However, each AM platform presents specific rheological requirements that are essential for successful 3D printing. First, viscosity requirements constrain VP polymeric materials to viscosities below 10 Pa s. Thus, this requirement presents a challenging paradox that must be overcome to attain the physical performance of high molecular weight polymers while maintaining suitable viscosities for VP polymeric materials. Second, the necessary rheological complexity that is required for DIW pastes requires additional rheological measurements to ensure desirable thixotropic behavior. This manuscript describes the importance of rheological measurements when designing polymeric latexes for AM. Latexes effectively decouple the dependency of viscosity on molecular weight, thus enabling high molecular weight polymers with low viscosities. Photo‐crosslinking of water‐soluble monomers and telechelic oligomeric diacrylates in the presence of the latex enables the fabrication of a scaffold, which is restricted to the continuous aqueous phase and effectively surrounds the latex nanoparticles enabling the printing of otherwise inaccessible high molecular weight polymers. Rheological testing, including both steady and oscillatory shear experiments, provides insights into system properties and provides predictability for successful printing. This perspective article aims to provide an understanding of both chemical functionality (photo‐ and thermal‐reactivity) and rheological response and their importance for the successful design and evaluation of VP and DIW processable latex formulations.

    more » « less