skip to main content


Title: The Impact of Cosmic Ray Injection on Magnetic Flux Tubes in a Galactic Disk
Abstract

In a seminal paper, Parker showed the vertical stratification of the interstellar medium (ISM) is unstable if magnetic fields and cosmic rays provide too large a fraction of pressure support. Cosmic ray acceleration is linked to star formation, so Parker’s instability and its nonlinear outcomes are a type of star formation feedback. Numerical simulations have shown the instability can significantly restructure the ISM, thinning the thermal gas layer and thickening the magnetic field and cosmic ray layer. However, the timescale on which this occurs is rather long (∼0.4 Gyr). Furthermore, the conditions for instability depend on the model adopted for cosmic ray transport. In this work, we connect the instability and feedback problems by examining the effect of a single, spatially and temporally localized cosmic ray injection on the ISM over ∼1 kpc3scales. We perform cosmic ray magnetohydrodynamic simulations using theAthena++code, varying the background properties, dominant cosmic ray transport mechanism, and injection characteristics between our simulation runs. We find robust effects of buoyancy for all transport models, with disruption of the ISM on timescales as short as 100 Myr when the background equilibrium is dominated by cosmic ray pressure.

 
more » « less
Award ID(s):
2007323
NSF-PAR ID:
10429640
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
Article No. 99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Large-scale galactic winds driven by stellar feedback are one phenomenon that influences the dynamical and chemical evolution of a galaxy, redistributing material throughout the circumgalatic medium. Non-thermal feedback from galactic cosmic rays (CRs) – high-energy charged particles accelerated in supernovae and young stars – can impact the efficiency of wind driving. The streaming instability limits the speed at which they can escape. However, in the presence of turbulence, the streaming instability is subject to suppression that depends on the magnetization of turbulence given by its Alfvén Mach number. While previous simulations that relied on a simplified model of CR transport have shown that super-Alfvénic streaming of CRs enhances galactic winds, in this paper we take into account a realistic model of streaming suppression. We perform three-dimensional magnetohydrodynamic simulations of a section of a galactic disc and find that turbulent damping dependent on local magnetization of turbulent interstellar medium (ISM) leads to more spatially extended gas and CR distributions compared to the earlier streaming calculations, and that scale heights of these distributions increase for stronger turbulence. Our results indicate that the star formation rate increases with the level of turbulence in the ISM. We also find that the instantaneous wind mass loading is sensitive to local streaming physics with the mass loading dropping significantly as the strength of turbulence increases.

     
    more » « less
  2. Abstract We study the propagation of mildly relativistic cosmic rays (CRs) in multiphase interstellar medium environments with conditions typical of nearby disk galaxies. We employ the techniques developed in Armillotta et al. to postprocess three high-resolution TIGRESS magnetohydrodynamic simulations modeling local patches of star-forming galactic disks. Together, the three simulations cover a wide range of gas surface density, gravitational potential, and star formation rate (SFR). Our prescription for CR propagation includes the effects of advection by the background gas, streaming along the magnetic field at the local ion Alfvén speed, and diffusion relative to the Alfvén waves, with the diffusion coefficient set by the balance between streaming-driven Alfvén wave excitation and damping mediated by local gas properties. We find that the combined transport processes are more effective in environments with higher SFR. These environments are characterized by higher-velocity hot outflows (created by clustered supernovae) that rapidly advect CRs away from the galactic plane. As a consequence, the ratio of midplane CR pressure to midplane gas pressures decreases with increasing SFR. We also use the postprocessed simulations to make predictions regarding the potential dynamical impacts of CRs. The relatively flat CR pressure profiles near the midplane argue that they would not provide significant support against gravity for most of the ISM mass. However, the CR pressure gradients are larger than the other pressure gradients in the extraplanar region (∣ z ∣ > 0.5 kpc), suggesting that CRs may affect the dynamics of galactic fountains and/or winds. The degree of this impact is expected to increase in environments with lower SFR. 
    more » « less
  3. ABSTRACT

    Cluster spiral galaxies suffer catastrophic losses of the cool, neutral gas component of their interstellar medium due to ram pressure stripping, contributing to the observed quenching of star formation in the disc compared to galaxies in lower density environments. However, the short-term effects of ram pressure on the star formation rate and active galactic nucleus (AGN) activity of galaxies undergoing stripping remain unclear. Numerical studies have recently demonstrated cosmic rays can dramatically influence galaxy evolution for isolated galaxies, yet their influence on ram pressure stripping remains poorly constrained. We perform the first cosmic ray magnetohydrodynamic simulations of an L* galaxy undergoing ram pressure stripping, including radiative cooling, self-gravity of the gas, star formation, and stellar feedback. We find the microscopic transport of cosmic rays plays a key role in modulating the star formation enhancement experienced by spirals at the outskirts of clusters compared to isolated spirals. Moreover, we find that galaxies undergoing ram pressure stripping exhibit enhanced gas accretion on to their centres, which may explain the prevalence of AGNs in these objects. In agreement with observations, we find cosmic rays significantly boost the global radio emission of cluster spirals. Although the gas removal rate is relatively insensitive to cosmic ray physics, we find that cosmic rays significantly modify the phase distribution of the remaining gas disc. These results suggest observations of galaxies undergoing ram pressure stripping may place novel constraints on cosmic ray calorimetry and transport.

     
    more » « less
  4. ABSTRACT

    Cosmic rays (CRs) are thought to be an important feedback mechanism in star-forming galaxies. They can provide an important source of pressure support and possibly drive outflows. We perform multidimensional CR magnetohydrodynamic simulations including transport by streaming and diffusion to investigate wind launching from an initially hydrostatic atmosphere by CRs. We estimate a characteristic Eddington limit on the CR flux for which the CR force exceeds gravity and compare it to simulated systems. Scaling our results to conditions in star-forming galaxies, we find that CRs are likely to contribute to driving outflows for a broad range of star formation environments. We quantify the momentum and energy transfer between CRs and gas, along with the associated mass outflow rates under different assumptions about the relative importance of streaming and diffusion for transport. In simulations with streaming, we observe the growth and saturation of the CR acoustic instability, but the CRs and gas remain well coupled, with CR momentum transferred efficiently to the gas even when this instability is present. Higher CR fluxes transfer more energy to the gas and drive stronger outflows. When streaming is present, most of the transferred energy takes the form of Alfvén wave heating of the gas, raising its pressure and internal energy, with a lower fractional contribution to the kinetic energy of the outflow. We also consider runs with radiative cooling, which modifies gas temperature and pressure profiles but does not seem to have a large impact on the mass outflow for super-Eddington CR fluxes.

     
    more » « less
  5. ABSTRACT

    We explore the impact of diffusive cosmic rays (CRs) on the evolution of the interstellar medium (ISM) under varying assumptions of supernova explosion environment. In practice, we systematically vary the relative fractions of supernovae (SN) occurring in star-forming high-density gas and those occurring in random locations decoupled from star-forming gas to account for SN from run-away stars or explosions in regions that have been cleared by prior SN, stellar winds, or radiation. We find that in the simple system of a periodic stratified gas layer the ISM structure will evolve to one of two solutions: a ‘peak driving’ state where warm gas is volume filling or a ‘thermal runaway’ state where hot gas is volume filling. CR pressure and transport are important factors that strongly influence the solution state the ISM reaches and have the ability to flip the ISM between solutions. Observable signatures such as gamma-ray emission and H i gas are explored. We find that gamma-ray luminosity from pion decay is largely consistent with observations for a range of model parameters. The thickness of the H i gas layer may be too compact, however, this may be due to a large cold neutral fraction of mid-plane gas. The volume fraction of hot gas evolves to stable states in both solutions, but neither settles to a Milky Way-like configuration, suggesting that additional physics omitted here (e.g. a cosmological circumgalactic medium, radiation transport, or spectrally resolved and spatially varying CR transport) may be required.

     
    more » « less