skip to main content


Title: A mid-Cambrian tunicate and the deep origin of the ascidiacean body plan
Abstract

Tunicates are an evolutionarily significant subphylum of marine chordates, with their phylogenetic position as the sister-group to Vertebrata making them key to unraveling our own deep time origin. Tunicates greatly vary with regards to morphology, ecology, and life cycle, but little is known about the early evolution of the group, e.g. whether their last common ancestor lived freely in the water column or attached to the seafloor. Additionally, tunicates have a poor fossil record, which includes only one taxon with preserved soft-tissues. Here we describeMegasiphon thylakosnov., a 500-million-year-old tunicate from the Marjum Formation of Utah, which features a barrel-shaped body with two long siphons and prominent longitudinal muscles. The ascidiacean-like body of this new species suggests two alternative hypotheses for early tunicate evolution. The most likely scenario positsM. thylakosbelongs to stem-group Tunicata, suggesting that a biphasic life cycle, with a planktonic larva and a sessile epibenthic adult, is ancestral for this entire subphylum. Alternatively, a position within the crown-group indicates that the divergence between appendicularians and all other tunicates occurred 50 million years earlier than currently estimated based on molecular clocks. Ultimately,M. thylakosdemonstrates that fundamental components of the modern tunicate body plan were already established shortly after the Cambrian Explosion.

 
more » « less
NSF-PAR ID:
10429656
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. For neurula embryos of amphioxus (chordate subphylum Cephalochordata), the anterior region of the neural tube was studied with transmission electron microscopy. This survey demonstrated previously unreported cells, each characterized by a cilium bearing on its shaft a protruding lateral bubble packed with vesicles. Such cilia resemble those known from immature coronet cells in other chordates-namely, fishes in the Vertebrata and ascidians and appendicularians in the Tunicata. This wide occurrence of coronet-like cells raises questions about their possible homologies within the phylum Chordata. When considered at the level of the whole cell, such homology is not well supported. For example, the fish cells are generally thought to be glia, while the tunicate cells are considered to be neurons; moreover, cytoplasmic smooth endoplasmic reticulum, which is predominant in the former, is undetectable in the latter. In contrast, a more convincing case for homology can be made by limiting comparisons to the cell apices with their modified cilia. In addition to the fine-structural similarities between fishes and tunicates already mentioned, nonvisual opsins have been found associated with the vesicles in the modified cilia of both groups. Such opsins are thought to link photoreception to endocrine output controlling behavior. Further work would be needed to test the idea that the amphioxus diencephalic cells with lateral bubble cilia might similarly be opsin rich and could provide insights into the evolutionary history of the coronet cells within the phylum Chordata. 
    more » « less
  2. After the end-Cretaceous mass extinction, approximately 75% of life on land and in the sea disappeared. The mammals of the early Cenozoic rapidly diversified and dispersed, rising to numerical and ecological dominance beyond their Mesozoic norms. Among those initial groups that ushered in the Age of Mammals, Paleocene and Eocene ‘condylarths’ are thought to include the ancestors of modern odd-toed ungulates (horses, tapirs, rhinos). Tetraclaenodon is the oldest genus of the ‘condylarth’ group Phenacodontidae and one of the most abundant fossils from the San Juan Basin (SJB) of New Mexico. Tetraclaenodon was a medium sized (mean body mass ca. 10kg), terrestrial mammal which was lightly built and had an omnivorous to herbivorous bunodont dentition. Here we use multivariate and statistical analyses to investigate body mass and dental variation in 110 teeth of Tetraclaenodon spanning the Torrejonian (Paleocene) interval of the SJB. The specimens were grouped into six time bins by their biostratigraphical reference, from Tj1 (~63.8 Ma) through Tj6 (~62.7 Ma). Measurements of the length, mesial and distal width of the lower first molars (m1) were subject to principal component analysis (PCA), and m1 area was used to predict body mass using a regression equation. The PCA morphospace ordinates specimens along a PC1 axis that accounts for 90.05% of total variance and is significantly correlated with body size. A PERMANOVA test finds a significant difference in morphospace occupation (non-overlap) between clusters of specimens from Tj1-3 and Tj4-6, but there are no significant differences between the individual time bins within each cluster. This trend is also seen in the body size estimates: Mann-Whitney tests recover significant differences between the two clusters. These results suggest that Torrejonian populations of Tetraclaenodon were relatively constant in size throughout Tj1-3, but between Tj3 and Tj4 underwent an increase in body mass and subsequently stabilized (at this resolution) for the remainder of the Torrejonian. A similar trend is seen in contemporary populations of the periptychid ‘condylarth’ Periptychus, suggesting that there were selective environmental pressures acting on these herbivorous species. These body size differences may reflect the emergence of a new, larger Tetraclaenodon species in Tj4, or may be associated to an environmental change, perhaps relating to climate or vegetation. In either case, this illustrates dynamic evolution of mammals during the few million years after the extinction. Grant Information: European Research Council Starting Grant (ERC StG 2017, 756226, PalM), National Science Foundation (EAR- 1654952) 
    more » « less
  3. Abstract

    Among marine organisms, gelatinous zooplankton (GZ; cnidarians, ctenophores, and pelagic tunicates) are unique in their energetic efficiency, as the gelatinous body plan allows them to process and assimilate high proportions of oceanic carbon. Upon death, their body shape facilitates rapid sinking through the water column, resulting in carcass depositions on the seafloor (“jelly‐falls”). GZ are thought to be important components of the biological pump, but their overall contribution to global carbon fluxes remains unknown. Using a data‐driven, three‐dimensional, carbon cycle model resolved to a 1° global grid, with a Monte Carlo uncertainty analysis, we estimate that GZ consumed 7.9–13 Pg C y−1in phytoplankton and zooplankton, resulting in a net production of 3.9–5.8 Pg C y−1in the upper ocean (top 200 m), with the largest fluxes from pelagic tunicates. Non‐predation mortality (carcasses) comprised 25% of GZ production, and combined with the much greater fecal matter flux, total GZ particulate organic carbon (POC) export at 100 m was 1.6–5.2 Pg C y−1, equivalent to 32–40% of the global POC export. The fast sinking GZ export resulted in a high transfer efficiency (Teff) of 38–62% to 1,000 m and 25–40% to the seafloor. Finally, jelly‐falls at depths >50 m are likely unaccounted for in current POC flux estimates and could increase benthic POC flux by 8–35%. The significant magnitude of and distinct sinking properties of GZ fluxes support a critical yet underrecognized role of GZ carcasses and fecal matter to the biological pump and air‐sea carbon balance.

     
    more » « less
  4. Human brain size nearly quadrupled in the six million years since Homo last shared a common ancestor with chimpanzees, but human brains are thought to have decreased in volume since the end of the last Ice Age. The timing and reason for this decrease is enigmatic. Here we use change-point analysis to estimate the timing of changes in the rate of hominin brain evolution. We find that hominin brains experienced positive rate changes at 2.1 and 1.5 million years ago, coincident with the early evolution of Homo and technological innovations evident in the archeological record. But we also find that human brain size reduction was surprisingly recent, occurring in the last 3,000 years. Our dating does not support hypotheses concerning brain size reduction as a by-product of body size reduction, a result of a shift to an agricultural diet, or a consequence of self-domestication. We suggest our analysis supports the hypothesis that the recent decrease in brain size may instead result from the externalization of knowledge and advantages of group-level decision-making due in part to the advent of social systems of distributed cognition and the storage and sharing of information. Humans live in social groups in which multiple brains contribute to the emergence of collective intelligence. Although difficult to study in the deep history of Homo , the impacts of group size, social organization, collective intelligence and other potential selective forces on brain evolution can be elucidated using ants as models. The remarkable ecological diversity of ants and their species richness encompasses forms convergent in aspects of human sociality, including large group size, agrarian life histories, division of labor, and collective cognition. Ants provide a wide range of social systems to generate and test hypotheses concerning brain size enlargement or reduction and aid in interpreting patterns of brain evolution identified in humans. Although humans and ants represent very different routes in social and cognitive evolution, the insights ants offer can broadly inform us of the selective forces that influence brain size. 
    more » « less
  5. Mammals survived the Chicxulub impact sixty-six million years ago and diversified into a wide variety of new ecological niches left by non-avian dinosaurs. Pantodonts, an enigmatic group, quickly achieved hefty postextinction body sizes to occupy large herbivore niches. We describe the first juvenile specimen of the Paleocene pantodont Pantolambda bathmodon (NMMNH P-27844) consisting of a partial skeleton including parts of the skull, a deciduous upper premolar series, nearly complete forelimbs, and elements of the carpus and hind limb. P-27844 is from the Torrejonian (~62.3 Ma) Tsosie Member of the Nacimiento Formation. P-27844 has the first deciduous teeth known for Pantolambda. dP2 and dP4 are submolariform with a triangular cross-section and a less developed protocone than adults. dP5 is molariform with a large paracone and metacone connected by wing-like cristae to form the w-shaped ectoloph typical of this genus’ molars. dP5 also has more pronounced conules than the molars. This molarization style of the ultimate premolar is seen across Pantodonta including in Alcidedorbignya inopinata, Barylambda faberi, and Coryphodon sp. The postcranial morphology of P-27844 is generally concordant with that of adults. This correspondence manifests particularly clearly in the forelimbs. The distal humerus exhibits the base of a posterolaterally directed epicondylar crest which likely anchored the anconeus and the extensor carpi radialis muscles, a deep radial fossa, and an open entepicondylar foramen. The ulna shows a welldeveloped anconeal process, a pronounced biceps and brachialis fossa, and a shallower groove to accommodate the abductor pollicis longus. The radius possesses a shallow pronator crest that originates near its distal end and extends about two-thirds of the way along the shaft. Interestingly, in contrast to adults, the radial shaft is straight rather than having moderate sigmoidal curvature and has not undergone epiphyseal fusion. Altogether, these osteological features illustrate that, even at its early ontogenetic stage, P-27844 possessed robust forelimb musculature. Using Developmental Mass Extrapolation from long bone measurements, P-27844’s body mass is estimated to be ~17 kg at time of death (~40% of adult body mass). Paleohistological analyses demonstrate the animal experienced a rapid pace of life for its body size and died ~2.5 months after birth. This specimen gives unprecedented insight into the early life history of Pantolambda. 
    more » « less