skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deep learning closure models for large-eddy simulation of flows around bluff bodies
Near-wall flow simulation remains a central challenge in aerodynamics modelling: Reynolds-averaged Navier–Stokes predictions of separated flows are often inaccurate, and large-eddy simulation (LES) can require prohibitively small near-wall mesh sizes. A deep learning (DL) closure model for LES is developed by introducing untrained neural networks into the governing equations and training in situ for incompressible flows around rectangular prisms at moderate Reynolds numbers. The DL-LES models are trained using adjoint partial differential equation (PDE) optimization methods to match, as closely as possible, direct numerical simulation (DNS) data. They are then evaluated out-of-sample – for aspect ratios, Reynolds numbers and bluff-body geometries not included in the training data – and compared with standard LES models. The DL-LES models outperform these models and are able to achieve accurate LES predictions on a relatively coarse mesh (downsampled from the DNS mesh by factors of four or eight in each Cartesian direction). We study the accuracy of the DL-LES model for predicting the drag coefficient, near-wall and far-field mean flow, and resolved Reynolds stress. A crucial challenge is that the LES quantities of interest are the steady-state flow statistics; for example, a time-averaged velocity component $$\langle {u}_i\rangle (x) = \lim _{t \rightarrow \infty } ({1}/{t}) \int _0^t u_i(s,x)\, {\rm d}s$$ . Calculating the steady-state flow statistics therefore requires simulating the DL-LES equations over a large number of flow times through the domain. It is a non-trivial question whether an unsteady PDE model with a functional form defined by a deep neural network can remain stable and accurate on $$t \in [0, \infty )$$ , especially when trained over comparatively short time intervals. Our results demonstrate that the DL-LES models are accurate and stable over long time horizons, which enables the estimation of the steady-state mean velocity, fluctuations and drag coefficient of turbulent flows around bluff bodies relevant to aerodynamics applications.  more » « less
Award ID(s):
2215472
PAR ID:
10429703
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
966
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent direct numerical simulations (DNS) and experiments in turbulent channel flow have found intermittent low- and high-drag events in Newtonian fluid flows, at Reτ=uτh/ν between 70 and 100, where uτ, h and ν are the friction velocity, channel half-height and kinematic viscosity, respectively. These intervals of low-drag and high-drag have been termed “hibernating” and “hyperactive”, respectively, and in this paper, a further investigation of these intermittent events is conducted using experimental and numerical techniques. For experiments, simultaneous measurements of wall shear stress and velocity are carried out in a channel flow facility using hot-film anemometry (HFA) and laser Doppler velocimetry (LDV), respectively, for Reτ between 70 and 250. For numerical simulations, DNS of a channel flow is performed in an extended domain at Reτ = 70 and 85. These intermittent events are selected by carrying out conditional sampling of the wall shear stress data based on a combined threshold magnitude and time-duration criteria. The use of three different scalings (so-called outer, inner and mixed) for the time-duration criterion for the conditional events is explored. It is found that if the time-duration criterion is kept constant in inner units, the frequency of occurrence of these conditional events remain insensitive to Reynolds number. There exists an exponential distribution of frequency of occurrence of the conditional events with respect to their duration, implying a potentially memoryless process. An explanation for the presence of a spike (or dip) in the ensemble-averaged wall shear stress data before and after the low-drag (or high-drag) events is investigated. During the low-drag events, the conditionally-averaged streamwise velocities get closer to Virk’s maximum drag reduction (MDR) asymptote, near the wall, for all Reynolds numbers studied. Reynolds shear stress (RSS) characteristics during these conditional events are investigated for Reτ = 70 and 85. Except very close to the wall, the conditionally-averaged RSS is higher than the time-averaged value during the low-drag events. 
    more » « less
  2. One of the key factors in simulating realistic wall-bounded flows at high Reynolds numbers is the selection of an appropriate turbulence model for the steady Reynolds Averaged Navier–Stokes equations (RANS) equations. In this investigation, the performance of several turbulence models was explored for the simulation of steady, compressible, turbulent flow on complex geometries (concave and convex surface curvatures) and unstructured grids. The turbulence models considered were the Spalart–Allmaras model, the Wilcox k- ω model and the Menter shear stress transport (SST) model. The FLITE3D flow solver was employed, which utilizes a stabilized finite volume method with discontinuity capturing. A numerical benchmarking of the different models was performed for classical Computational Fluid Dynamic (CFD) cases, such as supersonic flow over an isothermal flat plate, transonic flow over the RAE2822 airfoil, the ONERA M6 wing and a generic F15 aircraft configuration. Validation was performed by means of available experimental data from the literature as well as high spatial/temporal resolution Direct Numerical Simulation (DNS). For attached or mildly separated flows, the performance of all turbulence models was consistent. However, the contrary was observed in separated flows with recirculation zones. Particularly, the Menter SST model showed the best compromise between accurately describing the physics of the flow and numerical stability. 
    more » « less
  3. Direct numerical simulation (DNS) of turbulent flows is computationally expensive and cannot be applied to flows with large Reynolds numbers. Low-resolution large eddy simulation (LES) is a popular alternative, but it is unable to capture all of the scales of turbulent transport accurately. Reconstructing DNS from low-resolution LES is critical for large-scale simulation in many scientific and engineering disciplines, but it poses many challenges to existing super-resolution methods due to the complexity of turbulent flows and computational cost of generating frequent LES data. We propose a physics-guided neural network for reconstructing frequent DNS from sparse LES data by enhancing its spatial resolution and temporal frequency. Our proposed method consists of a partial differential equation (PDE)-based recurrent unit for capturing underlying temporal processes and a physics-guided super-resolution model that incorporates additional physical constraints. We demonstrate the effectiveness of both components in reconstructing the Taylor-Green Vortex using sparse LES data. Moreover, we show that the proposed recurrent unit can preserve the physical characteristics of turbulent flows by leveraging the physical relationships in the Navier-Stokes equation. 
    more » « less
  4. In this study, we conduct a parametric analysis to evaluate the sensitivities of wall-modeled large-eddy simulation (LES) with respect to subgrid-scale (SGS) models, mesh resolution, wall boundary conditions and mesh anisotropy. While such investigations have been conducted for attached/flat-plate flow configurations, systematic studies specifically targeting turbulent flows with separation are notably sparse. To bridge this gap, our study focuses on the flow over a two-dimensional Gaussian-shaped bump at a moderately high Reynolds number, which involves smooth-body separation of a turbulent boundary layer under pressure-gradient and surface- curvature effects. In the simulations, the no-slip condition at the wall is replaced by three different forms of boundary condition based on the thin boundary layer equations and the mean wall-shear stress from high-fidelity numerical simulation to avoid the additional complexity of modeling the wall-shear stress. Various statistics, including the mean separation bubble size, mean velocity profile, and dissipation from SGS model, are compared and analyzed. The results reveal that capturing the separation bubble strongly depends on the choice of SGS model. While simulations approach grid convergence with resolutions nearing those of wall-resolved LES meshes, above this limit, the LES predictions exhibit intricate sensitivities to mesh resolution. Furthermore, both wall boundary conditions and the anisotropy of mesh cells exert discernible impacts on the turbulent flow predictions, yet the magnitudes of these impacts vary based on the specific SGS model chosen for the simulation. 
    more » « less
  5. The traditional approach of using the Monin–Obukhov similarity theory (MOST) to model near-surface processes in large-eddy simulations (LESs) can lead to significant errors in natural convection. In this study, we propose an alternative approach based on feedforward neural networks (FNNs) trained on output from direct numerical simulation (DNS). To evaluate the performance, we conduct both a priori and a posteriori tests. In the a priori (offline) tests, we compare the statistics of the surface shear stress and heat flux, computed from filtered DNS input variables, to the stress and flux obtained from the filtered DNS. Additionally, we investigate the importance of various input features using the Shapley additive explanations value and the conditional average of the filter grid cells. In the a posteriori (online) tests, we implement the trained models in the System for Atmospheric Modeling (SAM) LES and compare the LES-generated surface shear stress and heat flux with those in the DNS. Our findings reveal that vertical velocity, a traditionally overlooked flow quantity, is one of the most important input features for determining the wall fluxes. Increasing the number of input features improves the a priori test results but does not always improve the model performance in the a posteriori tests because of the differences in input variables between the LES and DNS. Last, we show that physics-aware FNN models trained with logarithmic and scaled parameters can well extrapolate to more intense convection scenarios than in the training dataset, whereas those trained with primitive flow quantities cannot. Significance StatementThe traditional near-surface turbulence model, based on a shear-dominated boundary layer flow, does not represent near-surface turbulence in natural convection. Using a feedforward neural network (FNN), we can construct a more accurate model that better represents the near-surface turbulence in various flows and reveals previously overlooked controlling factors and process interactions. Our study shows that the FNN-generated models outperform the traditional model and highlight the importance of the near-surface vertical velocity. Furthermore, the physics-aware FNN models exhibit the potential to extrapolate to convective flows of various intensities beyond the range of the training dataset, suggesting their broader applicability for more accurate modeling of near-surface turbulence. 
    more » « less