skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GWAS on the Attack by Aspen Borer Saperda calcarata on Black Cottonwood Trees Reveals a Response Mechanism Involving Secondary Metabolism and Independence of Tree Architecture
Black cottonwood (Populus trichocarpa) is a species of economic interest and an outstanding study model. The aspen borer (Saperda calcarata) causes irreversible damage to poplars and other riparian species in North America. The insect can produce multiple effects ranging from the presence of some galleries in the stem to tree death. Despite the ecological and commercial importance of this tree–insect interaction, the genetic mechanisms underlying the response of P. trichocarpa to S. calcarata are scarcely understood. In this study, a common garden trial of P. trichocarpa provenances, established in Davis, California, was assessed at the second year of growth, regarding the infestation of S. calcarata from a natural outbreak. A genome-wide association study (GWAS) was conducted using 629k of exonic SNPs to assess the relationship between genomic variation and insect attack. Tree architecture, in terms of stem number per plant, and the wood metabolome were also included. Insect attack was independent of the number of stems per tree. The performed GWAS identified three significantly associated SNP markers (q-value < 0.2) belonging to the same number of gene models, encoding proteins involved in signal transduction mechanisms and secondary metabolite production, including that of R-mandelonitrile lyase, Chromodomain-helicase-DNA-binding family protein, and Leucine-rich repeat protein. These results are aligned with the current knowledge of defensive pathways in plants and trees, helping to expand the understanding of the defensive response mechanisms of black cottonwood against wood borer insects.  more » « less
Award ID(s):
1856450
PAR ID:
10429983
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Forests
Volume:
14
Issue:
6
ISSN:
1999-4907
Page Range / eLocation ID:
1129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such asPopulus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes. 
    more » « less
  2. Forest insects and pathogens have significant impacts on U.S. forests, annually affecting an area nearly three times that of wildfires and timber harvesting combined. However, coupled with these direct effects of forest insects and pathogens are the indirect impacts through influencing forest management practices, such as harvesting. In an earlier study, we surveyed private woodland owners in the northeastern U.S. and 84% of respondents indicated they intended to harvest in at least one of the presented insect invasion scenarios. This harvest response to insects represents a potentially significant shift in the timing, extent, and species selection of harvesting. Here we used the results from the landowner survey, regional forest inventory data, and characteristics of the emerald ash borer (Species: Agrilus planipennis Fairmaire, 1888) invasion to examine the potential for a rapidly spreading invasive insect to alter harvest regimes and affect regional forest conditions. Our analysis suggests that 25% of the woodland parcels in the Connecticut River Watershed in New England may intend to harvest in response to emerald ash borer. If the emerald ash borer continues to spread at its current rate within the region, and therefore the associated management response occurs in the next decade, this could result in an increase in harvest frequencies, from 2.6% year−1 (historically) to 3.7% year−1 through to approximately 2030. If harvest intensities remain at levels found in remeasured Forest Inventory and Analysis plots, this insect-initiated harvesting would result in the removal of 12%–13% of the total aboveground biomass. Eighty-one percent of the removed biomass would be from species other than ash, creating a forest disturbance that is over twice the magnitude than that created by emerald ash borer alone, with the most valuable co-occurring species most vulnerable to biomass loss. 
    more » « less
  3. Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such as Populus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that: 1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds and nitrogen. 2) For both defense and structural compounds, plastic responses to garden climate depended on the climate in which a population or genotype evolved. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from hotter provenances. 3) Trees from cool provenances growing in cool conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses. 4) The combination of hot growing conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems in the southwestern US, the effects of changes in phytochemical traits can be wide-reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes. 
    more » « less
  4. Disturbances from insect pests threaten ecologically and economically important goods and services supplied by forests, including wood production and carbon sequestration. We highlight the factors that influence these services’resistance, a term quantifying the initial response to disturbance. Insects inflict damage through a range of mechanisms, prompting distinct plant physiological responses that scale to influence ecosystem processes and, with time, goods and services. The degree and timing of tree mortality and defoliation affect the amount of residual vegetation available to support compensatory wood production and influence carbon sequestration by changing rates of detritus‐fueled decomposition. Compounding, or sequential, insect attacks may prime a forest for additional disturbance, further eroding wood production and carbon sequestration. Forest management practices that promote biological and structural diversity, and augment or retain limiting biological and nutrient resources, may buffer against the effects of insect pests on wood production and carbon sequestration. 
    more » « less
  5. Abstract Trees'totalamount of non‐structural carbohydrate (NSC) stores and theproportionof these stores residing as insoluble starch are vital traits for individuals living in variable environments. However, our understanding of how stores vary in response to environmental stress is poorly understood as the genetic component of storage is rarely accounted for in studies. Here, we quantified variation in NSC traits in branch samples taken from over 600 clonally transplanted black cottonwood (Populus trichocarpa)trees grown in two common gardens. We found heritable variation in both total NSC stores and the proportion of stores in starch (H2TNC = 0.19, H2PropStarch = 0.31), indicating a substantial genetic component of variation. In addition, we found high amounts of plasticity in both traits in response to cold temperatures and significant genotype‐by‐environment (GxE) interactions in the total amount of NSC stored (54% of P is GxE). This finding of high GxE indicates extensive variation across trees in their response to environment, which may explain why previous studies of carbohydrate stores' responses to stress have failed to converge on a consistent pattern. Overall, we found high amounts of environmental and genetic variation in NSC storage concentrations, which may bolster species against future climate change. 
    more » « less