skip to main content


Title: Planting a Lyman alpha forest on AbacusSummit
ABSTRACT

The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock–Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations ($L_{\rm box} = 2\, h^{-1}\, {\rm Gpc}$, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn–Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG; $L_{\rm box} = 205\, h^{-1}\, {\rm Mpc}$, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section ‘Data Availability’).

 
more » « less
NSF-PAR ID:
10430131
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
1
ISSN:
0035-8711
Page Range / eLocation ID:
p. 1008-1024
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    The joint analysis of different cosmological probes, such as galaxy clustering and weak lensing, can potentially yield invaluable insights into the nature of the primordial Universe, dark energy, and dark matter. However, the development of high-fidelity theoretical models is a necessary stepping stone. Here, we present public high-resolution weak lensing maps on the light-cone, generated using the N-body simulation suite abacussummit, and accompanying weak lensing mock catalogues, tuned to the Early Data Release small-scale clustering measurements of the Dark Energy Spectroscopic Instrument. Available in this release are maps of the cosmic shear, deflection angle, and convergence fields at source redshifts ranging from z = 0.15 to 2.45 as well as cosmic microwave background convergence maps for each of the 25 base-resolution simulations ($L_{\rm box} = 2000\, h^{-1}\, {\rm Mpc}$ and Npart = 69123) as well as for the two huge simulations ($L_{\rm box} = 7500\, h^{-1}\, {\rm Mpc}$ and Npart = 86403) at the fiducial abacussummit cosmology. The pixel resolution of each map is 0.21 arcmin, corresponding to a healpix Nside of 16 384. The sky coverage of the base simulations is an octant until z ≈ 0.8 (decreasing to about 1800 deg2 at z ≈ 2.4), whereas the huge simulations offer full-sky coverage until z ≈ 2.2. Mock lensing source catalogues are sampled matching the ensemble properties of the Kilo-Degree Survey, Dark Energy Survey, and Hyper Suprime-Cam data sets. The mock catalogues are validated against theoretical predictions for various clustering and lensing statistics, such as correlation multipoles, galaxy–shear, and shear–shear, showing excellent agreement. All products can be downloaded via a Globus endpoint (see Data Availability section).

     
    more » « less
  2. ABSTRACT

    We present the first comprehensive halo occupation distribution (HOD) analysis of the Dark Energy Spectroscopic Instrument (DESI) One-Percent Survey luminous red galaxy (LRG) and Quasi Stellar Object (QSO) samples. We constrain the HOD of each sample and test possible HOD extensions by fitting the redshift-space galaxy 2-point correlation functions in 0.15 < r < 32 h−1 Mpc in a set of fiducial redshift bins. We use AbacusSummit cubic boxes at Planck 2018 cosmology as model templates and forward model galaxy clustering with the AbacusHOD package. We achieve good fits with a standard HOD model with velocity bias, and we find no evidence for galaxy assembly bias or satellite profile modulation at the current level of statistical uncertainty. For LRGs in 0.4 < z < 0.6, we infer a satellite fraction of $f_\mathrm{sat} = 11\pm 1~{y{\ \mathrm{per\,cent}}}$, a mean halo mass of $\log _{10}\overline{M}_h/M_\odot =13.40^{+0.02}_{-0.02}$, and a linear bias of $b_\mathrm{lin} = 1.93_{-0.04}^{+0.06}$. For LRGs in 0.6 < z < 0.8, we find $f_\mathrm{sat}=14\pm 1~{{\ \mathrm{per\,cent}}}$, $\log _{10}\overline{M}_h/M_\odot =13.24^{+0.02}_{-0.02}$, and $b_\mathrm{lin}=2.08_{-0.03}^{+0.03}$. For QSOs, we infer $f_\mathrm{sat}=3^{+8}_{-2}\mathrm{per\,cent}$, $\log _{10}\overline{M}_h/M_\odot = 12.65^{+0.09}_{-0.04}$, and $b_\mathrm{lin} = 2.63_{-0.26}^{+0.37}$ in redshift range 0.8 < z < 2.1. Using these fits, we generate a large suite of high fidelity galaxy mocks, forming the basis of systematic tests for DESI Y1 cosmological analyses. We also study the redshift-evolution of the DESI LRG sample from z = 0.4 up to z = 1.1, revealling significant and interesting trends in mean halo mass, linear bias, and satellite fraction.

     
    more » « less
  3. ABSTRACT

    We have studied the galaxy-group cross-correlations in redshift space for the Galaxy And Mass Assembly (GAMA) Survey. We use a set of mock GAMA galaxy and group catalogues to develop and test a novel ‘halo streaming’ model for redshift-space distortions. This treats 2-halo correlations via the streaming model, plus an empirical 1-halo term derived from the mocks, allowing accurate modelling into the non-linear regime. In order to probe the robustness of the growth rate inferred from redshift-space distortions, we divide galaxies by colour, and divide groups according to their total stellar mass, calibrated to total mass via gravitational lensing. We fit our model to correlation data, to obtain estimates of the perturbation growth rate, fσ8, validating parameter errors via the dispersion between different mock realizations. In both mocks and real data, we demonstrate that the results are closely consistent between different subsets of the group and galaxy populations, considering the use of correlation data down to some minimum projected radius, rmin. For the mock data, we can use the halo streaming model to below $r_{\rm min} = 5{\, h^{-1}\, \rm Mpc}$, finding that all subsets yield growth rates within about 3 per cent of each other, and consistent with the true value. For the actual GAMA data, the results are limited by cosmic variance: fσ8 = 0.29 ± 0.10 at an effective redshift of 0.20; but there is every reason to expect that this method will yield precise constraints from larger data sets of the same type, such as the Dark Energy Spectroscopic Instrument (DESI) bright galaxy survey.

     
    more » « less
  4. null (Ed.)
    ABSTRACT In this work, we explore the application of intensity mapping to detect extended Ly α emission from the IGM via cross-correlation of PAUS images with Ly α forest data from eBOSS and DESI. Seven narrow-band (FWHM = 13 nm) PAUS filters have been considered, ranging from 455 to 515 nm in steps of 10 nm, which allows the observation of Ly α emission in a range 2.7 < z < 3.3. The cross-correlation is simulated first in an area of 100 deg2 (PAUS projected coverage), and second in two hypothetical scenarios: a deeper PAUS (complete up to iAB < 24 instead of iAB < 23, observation time ×6), and an extended PAUS coverage of 225 deg2 (observation time ×2.25). A hydrodynamic simulation of size 400 Mpc h−1 is used to simulate both extended Ly α emission and absorption, while the foregrounds in PAUS images have been simulated using a lightcone mock catalogue. Using an optimistic estimation of uncorrelated PAUS noise, the total probability of a non-spurious detection is estimated to be 1.8 per cent and 4.5 per cent for PAUS-eBOSS and PAUS-DESI, from a run of 1000 simulated cross-correlations with different realisations of instrumental noise and quasar positions. The hypothetical PAUS scenarios increase this probability to 15.3 per cent (deeper PAUS) and 9.0 per cent (extended PAUS). With realistic correlated noise directly measured from PAUS images, these probabilities become negligible. Despite these negative results, some evidences suggest that this methodology may be more suitable to broad-band surveys. 
    more » « less
  5. ABSTRACT

    Tracking the formation and evolution of dark matter haloes is a critical aspect of any analysis of cosmological N-body simulations. In particular, the mass assembly of a halo and its progenitors, encapsulated in the form of its merger tree, serves as a fundamental input for constructing semi-analytic models of galaxy formation and, more generally, for building mock catalogues that emulate galaxy surveys. We present an algorithm for constructing halo merger trees from abacussummit, the largest suite of cosmological N-body simulations performed to date consisting of nearly 60 trillion particles, and which has been designed to meet the Cosmological Simulation Requirements of the Dark Energy Spectroscopic Instrument (DESI) survey. Our method tracks the cores of haloes to determine associations between objects across multiple time slices, yielding lists of halo progenitors and descendants for the several tens of billions of haloes identified across the entire suite. We present an application of these merger trees as a means to enhance the fidelity of abacussummit halo catalogues by flagging and ‘merging’ haloes deemed to exhibit non-monotonic past merger histories. We show that this cleaning technique identifies portions of the halo population that have been deblended due to choices made by the halo finder, but which could have feasibly been part of larger aggregate systems. We demonstrate that by cleaning halo catalogues in this post-processing step, we remove potentially unphysical features in the default halo catalogues, leaving behind a more robust halo population that can be used to create highly accurate mock galaxy realizations from abacussummit.

     
    more » « less