We provide a unifying framework for the design and analysis of multi-calibrated predictors. By placing the multi-calibration problem in the general setting of multi-objective learning---where learning guarantees must hold simultaneously over a set of distributions and loss functions---we exploit connections to game dynamics to achieve state-of-the-art guarantees for a diverse set of multi-calibration learning problems. In addition to shedding light on existing multi-calibration guarantees and greatly simplifying their analysis, our approach also yields improved guarantees, such as error tolerances that scale with the square-root of group size versus the constant tolerances guaranteed by prior works, and improving the complexity of
k-class multi-calibration by an exponential factor of k versus Gopalan et al.. Beyond multi-calibration, we use these game dynamics to address emerging considerations in the study of group fairness and multi-distribution learning.
more »
« less
A Unifying Perspective on Multi-Calibration: Unleashing Game Dynamics for Multi-Objective Learning*
We provide a unifying framework for the design and analysis of multi-calibrated and moment-
multi-calibrated predictors. Placing the multi-calibration problem in the general setting of multiobjective
learning—where learning guarantees must hold simultaneously over a set of distribu-
tions and loss functions—we exploit connections to game dynamics to obtain state-of-the-art
guarantees for a diverse set of multi-calibration learning problems. In addition to shedding
light on existing multi-calibration guarantees, and greatly simplifying their analysis, our ap-
proach yields a 1/ε2 improvement in the number of oracle calls compared to the state-of-the-art
algorithm of Jung et al. [19] for learning deterministic moment-calibrated predictors and an
exponential improvement in k compared to the state-of-the-art algorithm of Gopalan et al. [14]
for learning a k-class multi-calibrated predictor. Beyond multi-calibration, we use these game
dynamics to address existing and emerging considerations in the study of group fairness and
multi-distribution learning.
more »
« less
- Award ID(s):
- 2023505
- PAR ID:
- 10430278
- Date Published:
- Journal Name:
- arXivorg
- ISSN:
- 2331-8422
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Estimating frequencies of elements appearing in a data stream is a key task in large-scale data analysis. Popular sketching approaches to this problem (e.g., CountMin and CountSketch) come with worst-case guarantees that probabilistically bound the error of the estimated frequencies for any possible input. The work of Hsu et al.~(2019) introduced the idea of using machine learning to tailor sketching algorithms to the specific data distribution they are being run on. In particular, their learning-augmented frequency estimation algorithm uses a learned heavy-hitter oracle which predicts which elements will appear many times in the stream. We give a novel algorithm, which in some parameter regimes, already theoretically outperforms the learning based algorithm of Hsu et al. without the use of any predictions. Augmenting our algorithm with heavy-hitter predictions further reduces the error and improves upon the state of the art. Empirically, our algorithms achieve superior performance in all experiments compared to prior approaches.more » « less
-
We introduce a new distance-preserving compact representation of multi-dimensional point-sets. Given n points in a d-dimensional space where each coordinate is represented using B bits (i.e., dB bits per point), it produces a representation of size O( d log(d B/epsilon) +log n) bits per point from which one can approximate the distances up to a factor of 1 + epsilon. Our algorithm almost matches the recent bound of Indyk et al, 2017} while being much simpler. We compare our algorithm to Product Quantization (PQ) (Jegou et al, 2011) a state of the art heuristic metric compression method. We evaluate both algorithms on several data sets: SIFT, MNIST, New York City taxi time series and a synthetic one-dimensional data set embedded in a high-dimensional space. Our algorithm produces representations that are comparable to or better than those produced by PQ, while having provable guarantees on its performance.more » « less
-
We provide a polynomial-time, scalable algorithm for equilibrium computation in multi-agent influence games on networks, extending work of Bindel, Kleinberg, and Oren (2015) from the single-agent to the multi-agent setting. In games of influence, agents have limited advertising budget to influence the initial predisposition of nodes in some network towards their products, but the eventual decisions of the nodes are determined by the stationary state of DeGroot opinion dynamics on the network, which takes over after the seeding (Ahmadinejad et al. 2014, 2015). In multi-agent systems, how should agents spend their budgets to seed the network to maximize their utility in anticipation of other advertising agents and the network dynamics? We show that Nash equilibria of this game are pure and (under weak assumptions) unique, and can be computed in polynomial time; we test our model by computing equilibria using mirror descent for the two-agent case on random graphs.more » « less
-
Serverless Function-As-A-Service (FaaS) is an emerging cloud computing paradigm that frees application developers from infrastructure management tasks such as resource provisioning and scaling. To reduce the tail latency of functions and improve resource utilization, recent research has been focused on applying online learning algorithms such as reinforcement learning (RL) to manage resources. Compared to existing heuristics-based resource management approaches, RL-based approaches eliminate humans in the loop and avoid the painstaking generation of heuristics. In this paper, we show that the state-of-The-Art single-Agent RL algorithm (S-RL) suffers up to 4.6x higher function tail latency degradation on multi-Tenant serverless FaaS platforms and is unable to converge during training. We then propose and implement a customized multi-Agent RL algorithm based on Proximal Policy Optimization, i.e., multi-Agent PPO (MA-PPO). We show that in multi-Tenant environments, MA-PPO enables each agent to be trained until convergence and provides online performance comparable to S-RL in single-Tenant cases with less than 10% degradation. Besides, MA-PPO provides a 4.4x improvement in S-RL performance (in terms of function tail latency) in multi-Tenant cases.more » « less