skip to main content


This content will become publicly available on July 10, 2024

Title: Modeling the Effects of Napping and Non-napping Patterns of Light Exposure on the Human Circadian Oscillator

In early childhood, consolidation of sleep from a biphasic to a monophasic sleep-wake pattern, that is, the transition from sleeping during an afternoon nap and at night to sleeping only during the night, represents a major developmental milestone. Reduced napping behavior is associated with an advance in the timing of the circadian system; however, it is unknown if this advance represents a standard response of the circadian clock to altered patterns of light exposure or if it additionally reflects features of the developing circadian system. Using a mathematical model of the human circadian pacemaker, we investigated the impact of napping and non-napping patterns of light exposure on entrained circadian phases. Simulated light schedules were based on published data from 20 children (34.2 ± 2.0 months) with habitual napping or non-napping sleep patterns (15 nappers). We found the model predicted different circadian phases for napping and non-napping light patterns: both the decrease in afternoon light during the nap and the increase in evening light associated with napping toddlers’ later bedtimes contributed to the observed circadian phase difference produced between napping and non-napping light schedules. We systematically quantified the effects on phase shifting of nap duration, timing, and light intensity, finding larger phase delays occurred for longer and earlier naps. In addition, we simulated phase response curves to a 1-h light pulse and 1-h dark pulse to predict phase and intensity dependence of these changes in light exposure. We found the light pulse produced larger shifts compared with the dark pulse, and we analyzed the model dynamics to identify the features contributing to this asymmetry. These findings suggest that napping status affects circadian timing due to altered patterns of light exposure, with the dynamics of the circadian clock and light processing mediating the effects of the dark pulse associated with a daytime nap.

 
more » « less
Award ID(s):
1853511
NSF-PAR ID:
10430566
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
Journal of Biological Rhythms
Volume:
38
Issue:
5
ISSN:
0748-7304
Page Range / eLocation ID:
p. 492-509
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Napping benefits long-term memory formation and is a tool many individuals use to improve daytime functioning. Despite its potential advantages, approximately 47% of people in the United States eschew napping. The goal of this study was to determine whether people who endorse napping at least once a week (nap+) show differences in nap outcomes, including nap-dependent memory consolidation, compared with people who rarely or never nap (nap−). Additionally, we tested whether four weeks of nap practice or restriction would change sleep and performance profiles. Using a perceptual learning task, we found that napping enhanced performance to a greater degree in nap+ compared with nap− individuals (at baseline). Additionally, performance change was associated with different electrophysiological sleep features in each group. In the nap+ group, spindle density was positively correlated with performance improvement, an effect specific to spindles in the hemisphere contralateral to the trained visual field. In the nap− group, slow oscillatory power (0.5–1 Hz) was correlated with performance. Surprisingly, no changes to performance or brain activity during sleep emerged after four weeks of nap practice or restriction. These results suggest that individual differences may impact the potential benefits of napping on performance and the ability to become a better napper.

     
    more » « less
  2. The circadian clock in mammals regulates the sleep/wake cycle and many associated behavioral and physiological processes. The cellular clock mechanism involves a transcriptional negative feedback loop that gives rise to circadian rhythms in gene expression with an approximately 24-hour periodicity. To maintain system robustness, clocks throughout the body must be synchronized and their functions coordinated. In mammals, the master clock is located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is entrained to the light/dark cycle through photic signal transduction and subsequent induction of core clock gene expression. The SCN in turn relays the time-of-day information to clocks in peripheral tissues. While the SCN is highly responsive to photic cues, peripheral clocks are more sensitive to non-photic resetting cues such as nutrients, body temperature, and neuroendocrine hormones. For example, feeding/fasting and physical activity can entrain peripheral clocks through signaling pathways and subsequent regulation of core clock genes and proteins. As such, timing of food intake and physical activity matters. In an ideal world, the sleep/wake and feeding/fasting cycles are synchronized to the light/dark cycle. However, asynchronous environmental cues, such as those experienced by shift workers and frequent travelers, often lead to misalignment between the master and peripheral clocks. Emerging evidence suggests that the resulting circadian disruption is associated with various diseases and chronic conditions that further circadian desynchrony and accelerate disease progression. In this review, we discuss how sleep, nutrition, and physical activity synchronize circadian clocks and how chronomedicine may offer novel strategies for disease intervention. 
    more » « less
  3. Abstract Study Objectives

    During adolescence, an interplay between biological and environmental factors leads to constrained sleep duration and timing. The high prevalence of sleep deprivation during this developmental period is a public health concern, given the value of restorative sleep for mental, emotional, and physical health. One of the primary contributing factors is the normative delay of the circadian rhythm. Therefore, the present study aimed to evaluate the effect of a gradually advanced morning exercise schedule (30 min shift each day) completed for 45 min on 5 consecutive mornings, on the circadian phase and daytime functioning of adolescents with a late chronotype, compared with a sedentary control group.

    Methods

    A total of 18 physically inactive male adolescents aged 15–18 years spent 6 nights at the sleep laboratory. The morning procedure included either 45 min walking on a treadmill or sedentary activities in dim light. Saliva dim light melatonin onset, evening sleepiness, and daytime functioning were assessed during the first and last night of laboratory attendance.

    Results

    The morning exercise group had a significantly advanced (earlier) circadian phase (27.5 min ± 32.0), while sedentary activity resulted in a phase delay (−34.3 min ± 53.2). Morning exercise also led to higher evening sleepiness in the earlier hours of the night, but not at bedtime. Mood measures improved slightly in both study conditions.

    Conclusions

    These findings highlight the phase-advancing effect of low-intensity morning exercise among this population. Future studies are needed to test the transference of these laboratory findings to adolescents’ real life.

     
    more » « less
  4. The proper timing of flowering, which is key to maximize reproductive success and yield, relies in many plant species on the coordination between environmental cues and endogenous developmental programs. The perception of changes in day length is one of the most reliable cues of seasonal change, and this involves the interplay between the sensing of light signals and the circadian clock. Here, we describe a Brachypodium distachyon mutant allele of the evening complex protein EARLY FLOWERING 3 (ELF3). We show that the elf3 mutant flowers more rapidly than wild type plants in short days as well as under longer photoperiods but, in very long (20 h) days, flowering is equally rapid in elf3 and wild type. Furthermore, flowering in the elf3 mutant is still sensitive to vernalization, but not to ambient temperature changes. Molecular analyses revealed that the expression of a short-day marker gene is suppressed in elf3 grown in short days, and the expression patterns of clock genes and flowering time regulators are altered. We also explored the mechanisms of photoperiodic perception in temperate grasses by exposing B. distachyon plants grown under a 12 h photoperiod to a daily night break consisting of a mixture of red and far-red light. We showed that 2 h breaks are sufficient to accelerate flowering in B. distachyon under non-inductive photoperiods and that this acceleration of flowering is mediated by red light. Finally, we discuss advances and perspectives for research on the perception of photoperiod in temperate grasses. 
    more » « less
  5. Many students self-report that they are “night owls,” which can result from neurodevelopmental delays in the circadian timing system. However, whether an individual considers themselves to be an evening-type versus a morning-type (self-reported chronotype) may also be influenced by academic demands (e.g. class start times, course load) and behavioral habits (e.g. bedtime social media use, late caffeine consumption, daytime napping). If so, then chronotype should be malleable. We surveyed 858 undergraduate students enrolled in demanding science courses at up to three time points. The survey assessed morning/evening chronotype, global sleep quality, academics, and behavioral habits. Evening and morning-type students showed similar demographics, stress levels, and academic demands. At baseline measurements, relative to morning-types, evening-types showed significantly worse sleep quality and duration as well as 22% greater bedtime social media usage, 27% greater daytime napping duration, and 46% greater likelihood of consuming caffeine after 5pm. These behavioral habits partially mediated the effects of selfreported chronotype on sleep quality/duration, even after controlling for demographic factors. Interestingly, 54 students reported switching from being at least moderate evening-types at baseline to being at least moderate morning-types later in the semester and 56 students showed the reverse pattern (6.3% of students switched from “definitely” one chronotype to the other chronotype). Evening-to-morning “chrono-switchers” consumed less caffeine after 5pm and showed significantly better sleep quantity/quality at the later timepoint. Thus, some students may consider themselves to be night owls in part because they consume caffeine later, take more daytime naps, or use more social media at bedtime. Experimental work is needed to determine whether nudging night owls to behave like morning larks results in better sleep health or academic achievement. 
    more » « less