skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Title: Impact of Stochastic Ocean Density Corrections on Air‐Sea Flux Variability
Abstract

Air‐sea flux variability has contributions from both ocean and atmosphere at different spatio‐temporal scales. Atmospheric synoptic scales and the air‐sea turbulent heat flux that they drive are well represented in climate models, but ocean mesoscales and their associated variability are often not well resolved due to non‐eddy‐resolving spatial resolutions of current climate models. We deploy a physics‐based stochastic subgrid‐scale parameterization for ocean density, that reinforces the lateral density variations due to oceanic eddies, and examine its effect on air‐sea heat flux variability in a comprehensive coupled climate model. The stochastic parameterization substantially modifies sea surface temperature (SST) and latent heat flux (LHF) variability and their co‐variability, primarily at scales near the resolution of the ocean model grid. Enhancement in the SST‐LHF anomaly covariance, and correlations, indicate that the ocean‐intrinsic component of the air‐sea heat flux variability is more consistent with high‐resolution satellite observations, especially in Gulf Stream region.

 
more » « less
PAR ID:
10430585
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air‐sea interactions resolved by satellite observations (OBS) and by two climate model simulations run with eddy‐resolving high‐resolution (HR) and eddy‐parameterized low‐resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface temperature (SST) and turbulent heat flux (THF) variability and co‐variability over scales between 50 and 10,000 km and 60 days to 80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper‐ocean temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that the atmosphere dominates the SST and THF variability over zonal wavelengths larger than ∼2,000–2,500 km. In HR and OBS, ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius of deformation (R1, ∼600–2,000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF (and consequently of SST) than at larger scales. The ocean forcing also induces oscillations in SST and THF with periods ranging from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that driven by atmospheric forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.

     
    more » « less
  2. Abstract

    Research on Atmospheric Rivers (ARs) has focused primarily on AR (thermo)dynamics and hydrological impacts over land. However, the evolution and potential role of nearshore air‐sea fluxes during landfalling ARs are not well documented. Here, we examine synoptic evolutions of nearshore latent heat flux (LHF) during strong late‐winter landfalling ARs (1979–2017) using 138 overshelf buoys along the U. S. west coast. Composite evolutions show that ARs typically receive upward (absolute) LHF from the coastal ocean. LHF is small during landfall due to weak air‐sea humidity gradients but is strongest (30–50 W/m2along the coast) 1–3 days before/after landfall. During El Niño winters, southern‐coastal LHF strengthens, coincident with stronger ARs. A decomposition of LHF reveals that sea surface temperature (SST) anomalies modulated by the El Niño Southern Oscillation dominate interannual LHF variations under ARs, suggesting a potential role for nearshore SST and LHF influencing the intensity of landfalling ARs.

     
    more » « less
  3. Abstract

    The role of ocean forcing on Atlantic multidecadal variability (AMV) is assessed from the (downward) heat flux–SST relation in the framework of a new stochastic climate theory forced by red noise ocean forcing. Previous studies suggested that atmospheric forcing drives SST variability from monthly to interannual time scales, with a positive heat flux–SST correlation, while heat flux induced by ocean processes can drive SST variability at decadal and longer time scales, with a negative heat flux–SST correlation. Here, first, we develop a theory to show how the sign of heat flux–SST correlation is affected by atmospheric and oceanic forcing with time scale. In particular, a red noise ocean forcing is necessary for the sign reversal of heat flux–SST correlation. Furthermore, this sign reversal can be detected equivalently in three approaches: the low-pass correlation at lag zero, the unfiltered correlation at long (heat flux) lead, and the real part of the heat flux–SST coherence. Second, we develop a new scheme in combination with the theory to assess the magnitude and time scale of the red noise ocean forcing for AMV in the GFDL SPEAR model (Seamless System for Prediction and Earth System Research) and observations. In both the model and observations, the ocean forcing on AMV is in general comparable with the atmospheric forcing, with a 90% probability greater than the atmospheric forcing in observations. In contrast to the white noise atmospheric forcing, the ocean forcing has a persistence time comparable or longer than a year, much longer than the SST persistence of ∼3 months. This slow ocean forcing is associated implicitly with slow subsurface ocean dynamics.

    Significance Statement

    A new theoretical framework is developed to estimate the ocean forcing on Atlantic multidecadal variability form heat flux–SST relations in climate models and observation. Our estimation shows the ocean forcing is comparable with the atmospheric forcing and, in particular, has a slow time scale of years.

     
    more » « less
  4. Abstract

    The thermal component of oceanic eddy available potential energy (EPE) generation due to air‐sea interaction is proportional to the product of anomalous sea surface temperature (SST) and net air‐sea heat flux (SHF). In this study we assess EPE generation and its timescale and space‐scale dependence from observations and a high‐resolution coupled climate model. A dichotomy exists in the literature with respect to the sign of this term, that is, whether it is a source or a sink of EPE. We resolve this dichotomy by partitioning the SST and net heat flux into climatological mean, climatological seasonal cycle, and remaining transient contributions, thereby separating the mesoscale eddy variability from the forced seasonal cycle. In this decomposition the mesoscale air‐sea SST‐SHF feedbacks act as a 0.1 TW global sink of EPE. In regions of the ocean with a large seasonal cycle, for example, midlatitudes of the Northern Hemisphere, the EPE generation by the forced seasonal cycle exceeds the mesoscale variability sink, such that the global generation by seasonal plus eddy variability acts as a 0.8 TW source. EPE destruction is largest in the midlatitude western boundary currents due to mesoscale air‐sea interaction and in the tropical Pacific where SST variability is due mainly to the El Niño–Southern Oscillation. The EPE sink in western boundary currents is spatially aligned with SST gradients and offset to the poleward side of currents, while the mean and seasonal generation are aligned with the warm core of the current. By successively smoothing the data in space and time we find that half of the EPE sink is confined to timescales less than annual and length scales less than 2°, within the oceanic mesoscale band.

     
    more » « less
  5. Abstract

    In a recent paper, we argued that ocean dynamics increase the variability of midlatitude sea surface temperatures (SSTs) on monthly to interannual time scales, but act to damp lower-frequency SST variability over broad midlatitude regions. Here, we use two configurations of a simple stochastic climate model to provide new insights into this important aspect of climate variability. The simplest configuration includes the forcing and damping of SST variability by observed surface heat fluxes only, and the more complex configuration includes forcing and damping by ocean processes, which are estimated indirectly from monthly observations. It is found that the simple model driven only by the observed surface heat fluxes generally produces midlatitude SST power spectra that are tooredcompared to observations. Including ocean processes in the model reduces this discrepancy bywhiteningthe midlatitude SST spectra. In particular, ocean processes generally increase the SST variance on <2-yr time scales and decrease it on >2-yr time scales. This happens because oceanic forcing increases the midlatitude SST variance across many time scales, but oceanic damping outweighs oceanic forcing on >2-yr time scales, particularly away from the western boundary currents. The whitening of midlatitude SST variability by ocean processes also operates in NCAR’s Community Earth System Model (CESM). That is, midlatitude SST spectra are generally redder when the same atmospheric model is coupled to a slab rather than dynamically active ocean model. Overall, the results suggest that forcing and damping by ocean processes play essential roles in driving midlatitude SST variability.

     
    more » « less