skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Beyond Simple Trend Tests: Detecting Significant Changes in Design‐Flood Quantiles
Abstract

Changes in annual maximum flood (AMF), which are usually detected using simple trend tests (e.g., Mann‐Kendall test (MKT)), are expected to change design‐flood estimates. We propose an alternate framework to detect significant changes in design‐flood between two periods and evaluate it for synthetically generated AMF from the Log‐Pearson Type‐3 (LP3) distribution due to changes in moments associated with flood distribution. Synthetic experiments show MKT does not consider changes in all three moments of the LP3 distribution and incorrectly detects changes in design‐flood. We applied the framework on 31 river basins spread across the United States. Statistically significant changes in design‐flood quantiles were observed even without a significant trend in AMF and basins with statistically significant trend did not necessarily exhibit statistically significant changes in design‐flood. We recommend application of the framework for evaluating changes in design‐flood estimates considering changes in all the moments as opposed to simple trend tests.

 
more » « less
Award ID(s):
1805293
NSF-PAR ID:
10430594
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flood‐frequency curves, critical for water infrastructure design, are typically developed based on a stationary climate assumption. However, climate changes are expected to violate this assumption. Here, we propose a new, climate‐informed methodology for estimating flood‐frequency curves under non‐stationary future climate conditions. The methodology develops an asynchronous, semiparametric local‐likelihood regression (ASLLR) model that relates moments of annual maximum flood to climate variables using the generalized linear model. We estimate the first two marginal moments (MM) – the mean and variance – of the underlying log‐Pearson Type‐3 distribution from the ASLLR with the monthly rainfall and temperature as predictors. The proposed methodology, ASLLR‐MM, is applied to 40 U.S. Geological Survey streamgages covering 18 water resources regions across the conterminous United States. A correction based on the aridity index was applied on the estimated variance, after which the ASLLR‐MM approach was evaluated with both historical (1951–2005) and projected (2006–2035, under RCP4.5 and RCP8.5) monthly precipitation and temperature from eight Global Circulation Models (GCMs) consisting of 39 ensemble members. The estimated flood‐frequency quantiles resulting from the ASLLR‐MM and GCM members compare well with the flood‐frequency quantiles estimated using the historical period of observed climate and flood information for humid basins, whereas the uncertainty in model estimates is higher in arid basins. Considering additional atmospheric and land‐surface conditions and a multi‐level model structure that includes other basins in a region could further improve the model performance in arid basins.

     
    more » « less
  2. Abstract

    The iron cycle is a key component of the Earth system. Yet how variable the atmospheric flux of soluble (bioaccessible) iron into oceans is, and how this variability is modulated by human activity and a changing climate, is not well known. For the first time, we characterize Satellite Era (1980 to 2015) daily‐to‐interannual modeled soluble iron emission and deposition variability from both pyrogenic (fires and anthropogenic combustion) and dust sources. Statistically significant emission trends exist: dust iron decreases, fire iron slightly increases, and anthropogenic iron increases. A strong temporal variability in deposition to ocean basins is found, and, for most regions, dust iron dominates the absolute deposition magnitude, fire iron is an important contributor to temporal variability, and anthropogenic iron imposes a significant increasing trend. Quantifying soluble iron daily‐to‐interannual deposition variability from all major iron sources, not only dust, will advance quantification of changes in marine biogeochemistry in response to the continuing human perturbation to the Earth System.

     
    more » « less
  3. Abstract

    Multispecies interactions can be important to the expression of phenotypes and in determining patterns of individual fitness in nature. Many plants engage in symbiosis with arbuscular mycorrhizal fungi (AMF), but the extent to which AMF modulate other species interactions remains poorly understood. We examined multispecies interactions among plants, AMF, and insect herbivores under drought stress using a greenhouse experiment and herbivore choice assays. The experiment included six populations ofClarkia xantiana(Onagraceae), which span a complex environmental gradient in the Southern Sierra Nevada of California.Clarkia xantiana's developing fruits are commonly attacked by grasshoppers at the end of the growing season, and the frequency of attack is more common in populations from the range center than range margin. We found that AMF negatively influenced all metrics of plant growth and reproduction across all populations, presumably because plants supplied carbon to AMF but did not benefit substantially from resources potentially supplied by the AMF. The fruits of plants infected with AMF did not differ from those without AMF in their resistance to grasshoppers. There was significant variation among populations in damage from herbivores but did not reflect the center‐to‐margin pattern of herbivory observed in the field. In sum, our results do not support the view that AMF interactions modulate plant–herbivore interactions in this system.

     
    more » « less
  4. Abstract

    The impact of anthropogenic forcings on tropical North Atlantic hurricane potential intensity (PI) is evaluated in Climate Model Intercomparison Project 5 models for the period 1958–2005. Eleven models are examined, but only seven models have a forced response that is distinguishable from internal variability. The use of discriminant analysis to optimize detectability does not yield a clear, common climate change signal. Of the seven models with a significant response, one has a negative linear trend while two have a positive linear trend. The trend in PI is not even consistent among reanalyses, although this difference is not statistically significant because of large uncertainties. Furthermore, estimates of PI internal variability have significantly different variances among different reanalysis products. These disagreements between models, reanalysis products, and between models and reanalyses, in conjunction with relatively large uncertainties, highlight the difficulty of detecting and attributing observed changes in North Atlantic hurricane potential intensity.

     
    more » « less
  5. Abstract

    Arbuscular mycorrhizal fungi (AMF, Glomeromycotina), in addition to forming symbioses with the majority of land plants, harbor vertically transmitted endosymbiotic bacteria ‘Candidatus Glomeribacter gigasporarum’ (CaGg) and ‘Candidatus Moeniiplasma glomeromycotorum’ (CaMg). CaGg is a nonessential mutualist of AMF, whereas the lifestyle of CaMg is unknown. To start unraveling the interactions between AMF and their endosymbionts in nature, we examined diversity and distribution of AMF-associated endobacteria in North Atlantic dunes at Cape Cod. Of nearly 500 foredune AMF isolates successfully genotyped during a systematic study, 94% were classified as Gigasporaceae. Two percent of all AMF spores harbored CaGg, and 88% contained CaMg. CaGg was found only in the Gigasporaceae, whereas CaMg was present in Gigasporaceae, Acaulosporaceae, and Diversisporaceae. Incidence of CaGg across AMF was not affected by any of the environmental parameters measured, whereas distribution of CaMg in one of the fungal hosts was impacted by plant density. CaMg populations associated with AMF individuals displayed high levels of genetic diversity but no evidence of gene flow, suggesting that host physical proximity is not sufficient to facilitate horizontal transmission of CaMg. Finally, in addition to a novel lineage of CaGg, we discovered that AMF likely harbor Burkholderia-related bacteria with close phylogenetic affinity to free-living Burkholderia and endobacteria of other Mucoromycota fungi.

     
    more » « less