skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phosphates form spectroscopically dark state assemblies in common aqueous solutions
Phosphates and polyphosphates play ubiquitous roles in biology as integral structural components of cell membranes and bone, or as vehicles of energy storage via adenosine triphosphate and phosphocreatine. The solution phase space of phosphate species appears more complex than previously known. We present nuclear magnetic resonance (NMR) and cryogenic transmission electron microscopy (cryo-TEM) experiments that suggest phosphate species including orthophosphates, pyrophosphates, and adenosine phosphates associate into dynamic assemblies in dilute solutions that are spectroscopically “dark.” Cryo-TEM provides visual evidence of the formation of spherical assemblies tens of nanometers in size, while NMR indicates that a majority population of phosphates remain as unassociated ions in exchange with spectroscopically invisible assemblies. The formation of these assemblies is reversibly and entropically driven by the partial dehydration of phosphate groups, as verified by diffusion-ordered spectroscopy (DOSY), indicating a thermodynamic state of assembly held together by multivalent interactions between the phosphates. Molecular dynamics simulations further corroborate that orthophosphates readily cluster in aqueous solutions. This study presents the surprising discovery that phosphate-containing molecules, ubiquitously present in the biological milieu, can readily form dynamic assemblies under a wide range of commonly used solution conditions, highlighting a hitherto unreported property of phosphate’s native state in biological solutions.  more » « less
Award ID(s):
2108205 2004217 2411584
PAR ID:
10430630
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
1
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Phosphate is an essential anion in the human body, comprising approximately 1% of the total body weight, and playing a vital role in metabolism, cell membranes, and bone formation. We have recently provided spectroscopic, microscopic, and computational evidence indicating that phosphates can aggregate much more readily in solution than previously thought. This prior work provided indirect evidence through the observation of unusual P NMR relaxation and line‐broadening effects with increasing temperature. Here, we show that, under conditions of slow exchange and selective RF saturation, additional features become visible in chemical exchange saturation transfer (CEST) experiments, which appear to be related to the previously reported phosphate clustering. In particular, CEST shows pronounced dips several ppm upfield of the main phosphate resonance at low temperatures, while direct P spectroscopy does not produce any signals in that range. We study the pH dependence of these new spectroscopic features and present exchange and spectroscopic parameters based on fitting the CEST data. These findings could be of importance in the investigation of phosphate dynamics, especially in the biological milieu. 
    more » « less
  2. Three carboxamidequinoline ligands were synthesized and their complexes with Eu 3+ were used for recognition and detection of organic/inorganic phosphates in water. The signal transduction process is based on an “On–Off–On” switch in the fluorescence signal utilizing changes in the intramolecular charge transfer (ICT). The fluorescence emission of ligands is quenched upon exposure to the Eu 3+ (Off signal). Following the addition of the phosphate analytes the ligand–Eu 3+ complex disassembles, which results in the regeneration of the original emission of the ligand (On signal). In general, the Eu 3+ complexes show higher affinity towards adenosine 5′-triphosphate (ATP) and lower affinity to other phosphates, namely adenosine 5′-diphosphate (ADP), adenosine 5′-monophosphate (AMP), pyrophosphate (H 2 P 2 O 7 2− , PPi), and dihydrogenphosphate (H 2 PO 4 − , Pi). 
    more » « less
  3. null (Ed.)
    To treat impairments in hard tissues or overcome pathological calcification in soft tissues, a detailed understanding of mineralization pathways of calcium phosphate materials is needed. Here, we report a detailed mechanistic study of hydroxyapatite (HA) mineralization pathways in an artificial saliva solution via in situ liquid cell transmission electron microscopy (TEM). It is found that the mineralization of HA starts by forming ion-rich and ion-poor solutions in the saliva solution, followed by coexistence of the classical and nonclassical nucleation processes. For the nonclassical path, amorphous calcium phosphate (ACP) functions as the substrate for HA nucleation on the ACP surface, while the classical path features direct HA nucleation from the solution. The growth of HA crystals on the surface of ACP is accompanied by the ACP dissolution process. The discoveries reported in this work are important to understand the physiological and pathological formation of HA minerals, as well as to engineer the biomineralization process for bone healing and hard tissue repairs. 
    more » « less
  4. Based on Coulomb's Law alone, electrostatic repulsion between two anions is expected to prevent their dimerization. Contrary to that idea, this Tutorial Review will present evidence showing that anion–anion dimers of protic hydroxyanions can form readily, and describe conditions that facilitate their formation. From X-ray crystal structures, we learn that hydroxyanions dimerize and oligomerize by overcoming long-range electrostatic opposition. Common examples are hydroxyanions of phosphate, sulfate, and carbonate, often in partnership with charged and neutral receptors. Short-range hydrogen bonds between anionic donors and acceptors are defined as anti-electrostatic hydrogen bonds (AEHBs) with insight from theoretical studies. While anion dimers are difficult to identify unequivocally in solution, these solution dimers have recently been definitively identified. The development of the supramolecular chemistry of anion–anion dimers has led to applications in hierarchical assemblies, such as supramolecular polymers and hydrogen bonded organic frameworks. 
    more » « less
  5. Monazite (CePO4) is a light rare earth element (REE) phosphate occurring as accessory mineral in metamorphic, igneous and sedimentary rocks, and is also a common mineral in REE mineral deposits. Metasomatism of monazite yields important clues about fluid-rock interaction in the crust, in particular, because its compositional variations may enable us to determine conditions of mineralization. The thermodynamic properties of monazite have been determined using several calorimetric methods, but up to the present time only a few solubility studies have been undertaken, which test the reliability of both, the thermodynamic properties of the REE phosphates and associated REE aqueous species. In this study, we have measured the solubility of the monoclinic REE phosphate end-members CePO4, SmPO4, and GdPO4 in aqueous perchloric acid solutions at temperatures from 100 to 250 °C at saturated water vapor pressure (swvp). The solubility products (Ks0) were determined according to the reaction: REEPO4 = REE3+ + PO43−. Combining available calorimetric data for the REE phosphates with the REE aqueous species from the Supcrt92 (slop98.dat) dataset, yields several orders of magnitude differences when compared with our solubility measurements. We have investigated ways to reconcile these discrepancies and propose a consistent set of provisional thermodynamic properties for REE aqueous species and REE phosphates that reproduce our measured solubility values. To reconcile these discrepancies, we have used the GEMS code package and GEMSFITS for parameter optimization by adjusting the standard Gibbs energy of REE3+ and REEOH2+ at 25 °C and 1 bar. An alternative optimization could involve adjustment of the standard Gibbs energy of REEPO4(s) and REEOH2+. Independently of the optimization method used, this study points to a need to revise the thermodynamic properties of REEOH2+ and possibly other REE hydroxyl species in future potentiometric studies. These revisions will have an impact on calculated solubilities of REE phosphates and our understanding of the mobility of REE in natural hydrothermal fluids. 
    more » « less