skip to main content


Title: Applying the framework to study climate-induced extremes on food, energy, and water systems (C-FEWS): The role of engineered and natural infrastructures, technology, and environmental management in the United States Northeast and Midwest
Change to global climate, including both its progressive character and episodic extremes, constitutes a critical societal challenge. We apply here a framework to analyze Climate-induced Extremes on the Food, Energy, Water System Nexus (C-FEWS), with particular emphasis on the roles and sensitivities of traditionally-engineered (TEI) and nature-based (NBI) infrastructures. The rationale and technical specifications for the overall C-FEWS framework, its component models and supporting datasets are detailed in an accompanying paper (Vörösmarty et al., this issue). We report here on initial results produced by applying this framework in two important macro-regions of the United States (Northeast, NE; Midwest, MW), where major decisions affecting global food production, biofuels, energy security and pollution abatement require critical scientific support. We present the essential FEWS-related hypotheses that organize our work with an overview of the methodologies and experimental designs applied. We report on initial C-FEWS framework results using five emblematic studies that highlight how various combinations of climate sensitivities, TEI-NBI deployments, technology, and environmental management have determined regional FEWS performance over a historical time period (1980–2019). Despite their relative simplicity, these initial scenario experiments yielded important insights. We found that FEWS performance was impacted by climate stress, but the sensitivity was strongly modified by technology choices applied to both ecosystems (e.g., cropland production using new cultivars) and engineered systems (e.g., thermoelectricity from different fuels and cooling types). We tabulated strong legacy effects stemming from decisions on managing NBI (e.g., multi-decade land conversions that limit long-term carbon sequestration). The framework also enabled us to reveal how broad-scale policies aimed at a particular net benefit can result in unintended and potentially negative consequences. For example, tradeoff modeling experiments identified the regional importance of TEI in the form wastewater treatment and NBI via aquatic self-purification. This finding, in turn, could be used to guide potential investments in point and/or non-point source water pollution control. Another example used a reduced complexity model to demonstrate a FEWS tradeoff in the context of water supply, electricity production, and thermal pollution. Such results demonstrated the importance of TEI and NBI in jointly determining historical FEWS performance, their vulnerabilities, and their resilience to extreme climate events. These infrastructures, plus technology and environmental management, constitute the “policy levers” which can actively be engaged to mitigate the challenge of contemporary and future climate change.  more » « less
Award ID(s):
1856012
NSF-PAR ID:
10430687
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
11
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Climate change continues to challenge food, energy, and water systems (FEWS) across the globe and will figure prominently in shaping future decisions on how best to manage this nexus. In turn, traditionally engineered and natural infrastructures jointly support and hence determine FEWS performance, their vulnerabilities, and their resilience in light of extreme climate events. We present here a research framework to advance the modeling, data integration, and assessment capabilities that support hypothesis-driven research on FEWS dynamics cast at the macro-regional scale. The framework was developed to support studies on climate-induced extremes on food, energy, and water systems (C-FEWS) and designed to identify and evaluate response options to extreme climate events in the context of managing traditionally engineered (TEI) and nature-based infrastructures (NBI). This paper presents our strategy for a first stage of research using the framework to analyze contemporary FEWS and their sensitivity to climate drivers shaped by historical conditions (1980–2019). We offer a description of the computational framework, working definitions of the climate extremes analyzed, and example configurations of numerical experiments aimed at evaluating the importance of individual and combined driving variables. Single and multiple factor experiments involving the historical time series enable two categories of outputs to be analyzed: the first involving biogeophysical entities (e.g., crop production, carbon sequestered, nutrient and thermal pollution loads) and the second reflecting a portfolio of services provided by the region’s TEI and NBI, evaluated in economic terms. The framework is exercised in a series of companion papers in this special issue that focus on the Northeast and Midwest regions of the United States. Use of the C-FEWS framework to simulate historical conditions facilitates research to better identify existing FEWS linkages and how they function. The framework also enables a next stage of analysis to be pursued using future scenario pathways that will vary land use, technology deployments, regulatory objectives, and climate trends and extremes. It also supports a stakeholder engagement effort to co-design scenarios of interest beyond the research domain. 
    more » « less
  2. There is a rapidly growing need to communicate to the public and policymakers on the nature and impact of climate change and its associated extremes, which manifest themselves across essential Food-Energy-Water Systems (FEWS). The complexity of this nexus demands analytical tools that can capture the essence of FEWS with the climate system, which may be difficult to stage and implement from a computationally efficient point-of-view. Reduced Complexity Models (RCMs) can synthesize important facets of a system quickly and with less dependence on difficult-to-assign inputs. We report on the development of an RCM framework for the FEWS nexus, to serve as a basic research tool in facilitating parameter sensitivity experiments as well as a means to establish more insightful dialogue with stakeholders through joint scenario construction. Three stand-alone and coupled models at the basin scale have been configured using Stella Architect software to simulate: 1) major flows and storage of water, 2) power plant operations and subsequent impacts on river reaches; and 3) nitrogen (N) mobilization and transport from atmospheric and landmass sources to riverine receiving waters. The Delaware River Basin is chosen for a contemporary simulation test case. Modeled results are calibrated and validated using observed stream gauge data, indicating reliable model performance at the monthly and annual time steps (0.57 < NSE < 0.98). A set of single and multi-factor climate, technology, and policy experiments are then explored using the RCM framework. Basin-scale system sensitivities are investigated across a set of intensified climate extremes, revealing the crucial roles of sewage treatment and energy infrastructure for climate resilience, significant exacerbations as well as mitigations of thermal and N pollution under opposing climate extremes, and important tradeoffs between river temperature and electricity production that are explored with technology and policy scenarios. 
    more » « less
  3. Annual U.S. production of bioethanol, primarily produced from corn starch in the U.S. Midwest, rose to 57 billion liters in 2021, which fulfilled the required conventional biofuel target set forth by the Energy Independence and Security Act (EISA) of 2007. At the same time, the U.S. fell short of the cellulosic or advanced biofuel target of 79 billion liters. The growth of bioenergy grasses (e.g., Miscanthus and switchgrass) across the Central and Eastern U.S. has the potential to feed enhanced cellulosic bioethanol production and, if successful, increase renewable fuel volumes. However, water consumption and climate change and its extremes are critical concerns in corn and bioenergy grass productivity. These concerns are compounded by the demands on potentially productive land areas and water devoted to producing biofuels. This is a fundamental Food-Energy-Water System (FEWS) nexus challenge. We apply a computational framework to estimate potential bioenergy yield and conversion to bioethanol yield across the U.S., based on crop field studies and conversion technology analysis for three crops—corn, Miscanthus, and two cultivars of switchgrass (Cave-in-Rock and Alamo). The current study identifies regions where each crop has its highest yield across the Center and Eastern U.S. While growing bioenergy grasses requires more water than corn, one advantage they have as a source of bioethanol is that they control nitrogen leaching relative to corn. Bioenergy grasses also maintain steadily high productivity under extreme climate conditions, such as drought and heatwaves in the year 2012 over the U.S. Midwest, because the perennial growing season and the deeper and denser roots can ameliorate the soil water stress. While the potential ethanol yield could be enhanced using energy grasses, their practical success in becoming a potential source of ethanol yield remains limited by socio-economic and operational constraints and concerns regarding competition with food production. 
    more » « less
  4. Multisectoral models of regional bio-physical systems simulate policy responses to climate change and support climate mitigation and adaptation planning at multiple scales. Challenges facing these efforts include sometimes weak understandings of causal relationships, lack of integrated data streams, spatial and temporal incongruities with policy interests, and how to incorporate dynamics associated with human values, governance structures, and vulnerable populations. There are two general approaches to developing integrated models. The first involves stakeholder involvement in model design -- a participatory modeling approach. The second is to integrate existing models. This can be done in two ways: by integrating existing models or by a soft-linked confederation of existing models. A benefit of utilizing existing models is the leveraging of validated and familiar models that provide credibility. We report opportunities and challenges manifested in one effort to develop a regional food, energy, and water systems (FEWS) modeling framework using existing bio-physical models. The C-FEWS modeling framework (Climate-induced extremes on the linked food, energy, water system) is intended to identify and evaluate response options to extreme weather in the Midwest and Northeast United States thru the year 2100. We interviewed ten modelers associated with development of the C-FEWS framework and ten stakeholders from government agencies, planning agencies, and non-governmental organizations in New England. We inquired about their perspectives on the roles and challenges of regional FEWS modeling frameworks to inform planning and information needed to support planning in integrated food, energy, and water systems. We also analyzed discussions of meetings among modelers and among stakeholders and modelers. These sources reveal many agreements among modelers and stakeholders about the role of modeling frameworks, their benefits for policymakers, and the types of outputs they should produce. They also identify challenges to developing regional modeling frameworks that couple existing models and balancing model capabilities with stakeholder preferences for information. The results indicate the importance of modelers and stakeholders engaging in dialogue to craft modeling frameworks and scenarios that are credible and relevant for policymakers. We reflect on the implications for how FEWS modeling frameworks comprised of existing bio-physical models can be designed to better inform policy making at the regional scale. 
    more » « less
  5. Environmental impacts associated with inefficient and ineffective land-based wastewater treatment have direct implications for regional governments and local communities in the Caribbean due to the links between environmental quality of coastal areas (e.g. coral reefs) and socioeconomic activities (e.g. tourism, commercial fishing, cultural heritage, recreation). In Placencia, Belize an interdisciplinary team of students and community members investigate the tradeoffs that exists amid a food-energy-water systems (FEWS) case study, in order to co-create sustainable solutions. This work partners with Fragments of Hope and EcoFriendly Solutions to take a systems approach to consider the dynamic and interrelated factors and leverage points (e.g. technological, regulatory, organizational, social, economic) related to the adoption and sustainability of wastewater innovations at cayes where coral restoration work is occurring. This technology can improve water quality issues in sensitive marine ecosystems and productively reuse water and nutrients to grow food. Results show that marketing and technical strategies contributed to incremental improvements in the system's sustainability, while changing community behaviors (i.e. reporting the correct number of users and reclaiming resources – water and nutrients – for food production), was the more significant way to influence the sustainable management of the wastewater resources and to protect the coastal environment. The work is situated within the deeper context of graduate student research and training where the University of South Florida is partnering with the Caribbean Community Climate Change Center to raise up a new generation of globally competent science, technology, engineering, and math (STEM) students. These students develop interdisciplinary and 21st century skills, as well as technical and methodological flexibility to address the complexity inherent in “wicked problems”. To accomplish this, the partners provide resources and training for interdisciplinary and systems-based teaching and research that results in original and impactful solutions developed alongside community members to locally and globally focused challenges. 
    more » « less