skip to main content


Title: Low-Speed Clinorotation of Brachypodium distachyon and Arabidopsis thaliana Seedlings Triggers Root Tip Curvatures That Are Reminiscent of Gravitropism
Clinostats are instruments that continuously rotate biological specimens along an axis, thereby averaging their orientation relative to gravity over time. Our previous experiments indicated that low-speed clinorotation may itself trigger directional root tip curvature. In this project, we have investigated the root curvature response to low-speed clinorotation using Arabidopsis thaliana and Brachypodium distachyon seedlings as models. We show that low-speed clinorotation triggers root tip curvature in which direction is dictated by gravitropism during the first half-turn of clinorotation. We also show that the angle of root tip curvature is modulated by the speed of clinorotation. Arabidopsis mutations affecting gravity susception (pgm) or gravity signal transduction (arg1, toc132) are shown to affect the root tip curvature response to low-speed clinorotation. Furthermore, low-speed vertical clinorotation triggers relocalization of the PIN3 auxin efflux facilitator to the lateral membrane of Arabidopsis root cap statocytes, and creates a lateral gradient of auxin across the root tip. Together, these observations support a role for gravitropism in modulating root curvature responses to clinorotation. Interestingly, distinct Brachypodium distachyon accessions display different abilities to develop root tip curvature responses to low-speed vertical clinorotation, suggesting the possibility of using genome-wide association studies to further investigate this process.  more » « less
Award ID(s):
1951182
NSF-PAR ID:
10430881
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
24
Issue:
2
ISSN:
1422-0067
Page Range / eLocation ID:
1540
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Duque, Paula ; Szakonyi, Dora (Ed.)
    Gravity is a powerful element in shaping plant development, with gravitropism, the oriented growth response of plant organs to the direction of gravity, leading to each plant’s characteristic form both above and below ground. Despite being conceptually simple to follow, monitoring a plant’s directional growth responses can become complex as variation arises from both internal developmental cues as well as effects of the environment. In this protocol, we discuss approaches to gravitropism assays, focusing on automated analyses of root responses. For Arabidopsis, we recommend a simple 90􏰁 rotation using seedlings that are 5–8 days old. If images are taken at regular intervals and the environmental metadata is recorded during both seedling development and gravitropic assay, these data can be used to reveal quantitative kinetic patterns at distinct stages of the assay. The use of software that analyzes root system parameters and stores this data in the RSML format opens up the possibility for a host of root parameters to be extracted to characterize growth of the primary root and a range of lateral root phenotypes. 
    more » « less
  2. Plants have been recognized as key components of bioregenerative life support systems for space exploration, and many experiments have been carried out to evaluate their adaptability to spaceflight. Unfortunately, few of these experiments have involved monocot plants, which constitute most of the crops used on Earth as sources of food, feed, and fiber. To better understand the ability of monocot plants to adapt to spaceflight, we germinated and grew Brachypodium distachyon seedlings of the Bd21, Bd21-3, and Gaz8 accessions in a customized growth unit on the International Space Station, along with 1-g ground controls. At the end of a 4-day growth period, seedling organ’s growth and morphologies were quantified, and root and shoot transcriptomic profiles were investigated using RNA-seq. The roots of all three accessions grew more slowly and displayed longer root hairs under microgravity conditions relative to ground control. On the other hand, the shoots of Bd21-3 and Gaz-8 grew at similar rates between conditions, whereas those of Bd21 grew more slowly under microgravity. The three Brachypodium accessions displayed dramatically different transcriptomic responses to microgravity relative to ground controls, with the largest numbers of differentially expressed genes (DEGs) found in Gaz8 (4527), followed by Bd21 (1353) and Bd21-3 (570). Only 47 and six DEGs were shared between accessions for shoots and roots, respectively, including DEGs encoding wall-associated proteins and photosynthesis-related DEGs. Furthermore, DEGs associated with the “Oxidative Stress Response” GO group were up-regulated in the shoots and down-regulated in the roots of Bd21 and Gaz8, indicating that Brachypodium roots and shoots deploy distinct biological strategies to adapt to the microgravity environment. A comparative analysis of the Brachypodium oxidative-stress response DEGs with the Arabidopsis ROS wheel suggests a connection between retrograde signaling, light response, and decreased expression of photosynthesis-related genes in microgravity-exposed shoots. In Gaz8, DEGs were also found to preferentially associate with the “Plant Hormonal Signaling” and “MAP Kinase Signaling” KEGG pathways. Overall, these data indicate that Brachypodium distachyon seedlings exposed to the microgravity environment of ISS display accession- and organ-specific responses that involve oxidative stress response, wall remodeling, photosynthesis inhibition, expression regulation, ribosome biogenesis, and post-translational modifications. The general characteristics of these responses are similar to those displayed by microgravity-exposed Arabidopsis thaliana seedlings. However, organ- and accession-specific components of the response dramatically differ both within and between species. These results suggest a need to directly evaluate candidate-crop responses to microgravity to better understand their specific adaptability to this novel environment and develop cultivation strategies allowing them to strive during spaceflight. 
    more » « less
  3. Introduction

    VPS45 belongs to the Sec1/Munc18 family of proteins, which interact with and regulate Qa-SNARE function during membrane fusion. We have shown previously thatArabidopsis thalianaVPS45 interacts with the SYP61/SYP41/VTI12 SNARE complex, which locates on thetrans-Golgi network (TGN). It is required for SYP41 stability, and it functions in cargo trafficking to the vacuole and in cell expansion. It is also required for correct auxin distribution during gravitropism and lateral root growth.

    Results

    Asvps45knockout mutation is lethal in Arabidopsis, we identified a mutant,vps45-3, with a point mutation in theVPS45gene causing a serine 284-to-phenylalanine substitution. The VPS45-3 protein is stable and maintains interaction with SYP61 and SYP41. However,vps45-3plants display severe growth defects with significantly reduced organ and cell size, similar tovps45RNAi transgenic lines that have reduced VPS45 protein levels. Root hair and pollen tube elongation, both processes of tip growth, are highly compromised invps45-3. Mutant root hairs are shorter and thicker than those of wild-type plants, and are wavy. These root hairs have vacuolar defects, containing many small vacuoles, compared with WT root hairs with a single large vacuole occupying much of the cell volume. Pollen tubes were also significantly shorter invps45-3compared to WT.

    Discussion

    We thus show that VPS45 is essential for proper tip growth and propose that the observed vacuolar defects lead to loss of the turgor pressure needed for tip growth.

     
    more » « less
  4. Abstract

    The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.

     
    more » « less
  5. The phytohormone auxin regulates nearly every aspect of plant development. Transcriptional responses to auxin are driven by the activities of the AUXIN RESPONSE FACTOR family of transcription factors. ARF19 (AT1G19220) is critical in the auxin signaling pathway and has previously been shown to undergo protein condensation to tune auxin responses in the root. However, ARF19 condensation dynamics in other organs has not yet been described. In the Arabidopsis stomatal lineage, we found that ARF19 cytoplasmic condensates are enriched in guard cells and pavement cells, terminally differentiated cells in the leaf epidermis. This result is consistent with previous studies showing ARF19 condensation in mature root tissues. Our data reveal that the sequestration of ARF19 into cytoplasmic condensation in differentiated leaf epidermal cells is similar to root-specific condensation patterns. 
    more » « less