skip to main content

Title: Biotic extinction at the Norian/Rhaetian boundary (Upper Triassic): geochemical and isotope evidence of a previously unrecognised global event
turnovers culminating in the so-called End-Triassic Extinction. We attribute onset of this interval of declining diversity to unusually high volcanic activity at the Norian/Rhaetian boundary (NRB) that may have initiated the stepwise extinctions of the Late Triassic [1]. We correlate the initiation of a rapid decline in 87Sr/86Sr and 187Os/188Os seawater values [2, 3] to a negative organic carbon isotope shift, which we attribute to volcanogenic CO2 outgassing to the ocean-atmosphere system by the Angayucham large igneous province (LIP). By studying the geochemical and isotope composition of bulk rocks from different sections located at different latitudes, sides of the Pangea continent and Hemispheres, we documented an accelerated chemical weathering due to global warming by elevated CO2, which enhanced nutrient discharge to the oceans and thus greatly increased biological productivity; higher export production and oxidation of organic matter led to oceanic dysoxia to anoxia at the NRB. Biotic consequences of these climatic and environmental changes include severe extinctions of several fossil groups, such as ammonoids, bivalves and radiolarians, as has been documented worldwide [1].  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Goldschmidt 2022 Abstract
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The latest Triassic was an interval of prolonged biotic extinction culminated by the end-Triassic Extinction, which is associated with a pronounced perturbation of the global carbon cycle that can be connected to extensive volcanism of the Central Atlantic Magmatic Province (CAMP). Earlier chaotic perturbations of the global carbon cycle can also be tied to the onset of declining latest Triassic diversity, which reached its maximum across the Norian-Rhaetian boundary (NRB). These perturbations are global across the Panthalassa Ocean to both sides of the Pangean supercontinent in both the Northern and Southern Hemispheres. The NRB witnessed the severe global extinctions of significant marine fossil groups, such as ammonoids, bivalves, conodonts and radiolarians. The onset of the stepwise Late Triassic extinctions coincided with the NRB carbon perturbation (d13Corg), indicating that the combined climate and environmental changes impacted the global biota. The trigger of this event is attributed to a volcanic event pre-dating the NRB, an alternative source of volcanogenic gas emissions, and/or a meteorite impact. 
    more » « less
  2. null (Ed.)
    The Earth has been beset by many crises during its history, and yet comparing the ecological impacts of these mass extinctions has been difficult. Key questions concern the kinds of species that go extinct and survive, how communities rebuild in the post-extinction recovery phase, and especially how the scaling of events affects these processes. Here, we explore ecological impacts of terrestrial and freshwater ecosystems in three mass extinctions through the mid-Phanerozoic, a span of 121 million years (295–174 Ma). This critical duration encompasses the largest mass extinction of all time, the Permian–Triassic (P–Tr) and is flanked by two smaller crises, the Guadalupian–Lopingian (G–L) and Triassic–Jurassic (T–J) mass extinctions. Palaeocommunity dynamics modelling of 14 terrestrial and freshwater communities through a long sedimentary succession from the lower Permian to the lower Jurassic in northern Xinjiang, northwest China, shows that the P–Tr mass extinction differed from the other two in two ways: (i) ecological recovery from this extinction was prolonged and the three post-extinction communities in the Early Triassic showed low stability and highly variable and unpredictable responses to perturbation primarily following the huge losses of species, guilds and trophic space; and (ii) the G–L and T–J extinctions were each preceded by low-stability communities, but post-extinction recovery was rapid. Our results confirm the uniqueness of the P–Tr mass extinction and shed light on the trophic structure and ecological dynamics of terrestrial and freshwater ecosystems across the three mid-Phanerozoic extinctions, and how complex communities respond to environmental stress and how communities recovered after the crisis. Comparisons with the coeval communities from the Karoo Basin, South Africa show that geographically and compositionally different communities of terrestrial ecosystems were affected in much the same way by the P–Tr extinction. 
    more » « less
  3. We used spatial data from previously mapped preferential groundwater discharges throughout the Farmington River watershed in Connecticut and Massachusetts ( to guide water sample collection at known locations of groundwater discharging to surface water. In 2017 and 2019 - 2021, samples were collected during general river baseflow conditions (July ? November, less than 30.9 cms mean daily discharge (USGS gage 01189995, statistics 2010-2022) when the riverbank discharge points were exposed. We collected a suite of dissolved constituents and stable isotopes of water directly in the shallow saturated sediments of active points of discharge, and coincident stream chemical samples were also collected adjacent to locations of groundwater discharge. Data collected includes nutrients (NO3, NH4, Cl, SO4, PO4, dissolved organic carbon (DOC), and total nitrogen (TN)), greenhouse gases (CO2, CH4, and N2O), dissolved gases (N2, dissolved oxygen (DO)), conductivity, sediment characteristics, temperature, and spatial information. This dataset includes 2 main files: 1) Farmington_Chemistry_2017_2021.csv contains attribute information for each biogeochemical constituent collected at preferential groundwater discharges along the Farmington River network. 2)Farmington_Temporal_Cl_Rn_Iso_2020.csv contain attribute information for source characteristic data (Chloride, Radon, Isotope) collected at locations of repeat sampling at 5 groundwater seep faces along the Farmington River (Alsop and Rainbow Island). 
    more » « less
  4. The negative organic carbon isotope excursion (CIE) associated with the end-Triassic mass extinction (ETE) is conventionally interpreted as the result of a massive flux of isotopically light carbon from exogenous sources into the atmosphere (e.g., thermogenic methane and/or methane clathrate dissociation linked to the Central Atlantic Magmatic Province [CAMP]). Instead, we demonstrate that at its type locality in the Bristol Channel Basin (UK), the CIE was caused by a marine to nonmarine transition resulting from an abrupt relative sea level drop. Our biomarker and compound-specific carbon isotopic data show that the emergence of microbial mats, influenced by an influx of fresh to brackish water, provided isotopically light carbon to both organic and inorganic carbon pools in centimeter-scale water depths, leading to the negative CIE. Thus, the iconic CIE and the disappearance of marine biota at the type locality are the result of local environmental change and do not mark either the global extinction event or input of exogenous light carbon into the atmosphere. Instead, the main extinction phase occurs slightly later in marine strata, where it is coeval with terrestrial extinctions and ocean acidification driven by CAMP-induced increases inPco2; these effects should not be conflated with the CIE. An abrupt sea-level fall observed in the Central European basins reflects the tectonic consequences of the initial CAMP emplacement, with broad implications for all extinction events related to large igneous provinces.

    more » « less
  5. This repository contains all the water chemistry data, sediment borehole lithology observations, and handheld XRF observations of elemental concentrations in sediments used in this study. Study Abstract Groundwater containing high concentrations of dissolved arsenic (As) and iron (Fe(II)) discharges to rivers across the Ganges-Brahmaputra-Meghna delta. Observed Fe(III)-oxyhydroxide (FeOOH)-As deposits lining the riverbanks of the Meghna River may have been created by bidirectional mixing in the hyporheic zone (HZ) from ocean tides. This process has been named the Natural Reactive Barrier (NRB). Sedimentary organic carbon (SOC) is deposited annually on floodplains. Floodwaters that infiltrate through this layer may chemically transform the groundwater prior to discharging through the HZ in ways that influence the capture and retention of As in the NRB. The goal of this study is to understand how the interaction of these two scales of river-groundwater mixing influence the fate of As trapped within an NRB. Monitoring wells were installed to 1-17 m depth, up to 100 m distance from the river’s edge during the dry season on the East (Site 1) and West (Site 2) sides of the river. They were sampled during the dry season (January) under gaining river conditions. The physical properties and elemental composition of the sediment was described by hand observation and hand-held X-Ray Fluorescence (XRF), respectively. Mixing with river water was quantified using the sum of charge of major cations (TC). Site 1 has a sloping bank that is only partially inundated during the wet season. The aquifer is composed of homogeneous sand. Site 2 is flat and therefore fully inundated in the wet season. The aquifer is composed of sand with thin (1-20 cm thick) clay layers. Both sites generate the dissolved products of FeOOH-reduction coupled to organic carbon oxidation, and silicate weathering beneath the floodplain. These products are dissolved Fe, As, silica, bicarbonate, calcium and phosphate. This chemistry is conducive to the formation of crystalline iron oxide minerals such as goethite which may co-precipitate with As, trapping it long-term. 
    more » « less