skip to main content


Title: Modifying the yeast very long chain fatty acid biosynthetic machinery by the expression of plant 3-ketoacyl CoA synthase isozymes
Abstract Eukaryotes express a multi-component fatty acid elongase to produce very long chain fatty acids (VLCFAs), which are building blocks of diverse lipids. Elongation is achieved by cyclical iteration of four reactions, the first of which generates a new carbon–carbon bond, elongating the acyl-chain. This reaction is catalyzed by either ELONGATION DEFECTIVE LIKE (ELO) or 3-ketoacyl-CoA synthase (KCS) enzymes. Whereas plants express both ELO and KCS enzymes, other eukaryotes express only ELOs. We explored the Zea mays KCS enzymatic redundancies by expressing each of the 26 isozymes in yeast strains that lacked endogenous ELO isozymes. Expression of the 26 maize KCS isozymes in wild-type, scelo2 or scelo3 single mutants did not affect VLCFA profiles. However, a complementation screen of each of the 26 KCS isozymes revealed five that were capable of complementing the synthetically lethal scelo2; scelo3 double mutant. These rescued strains express novel VLCFA profiles reflecting the different catalytic capabilities of the KCS isozymes. These novel strains offer a platform to explore the relationship between VLCFA profiles and cellular physiology.  more » « less
Award ID(s):
2212799
NSF-PAR ID:
10430888
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary

    Long‐chain acyl‐CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil‐producing microalgae, including the diatomPhaeodactylum tricornutum, remain largely unknown.

    InP. tricornutum, a family of five genes (ptACSL1ptACSL5) encodes LACS activities. We generated singlelacsknockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations.

    ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. TheptACSL3mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl‐CoAs for lipid synthesis.

    Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.

     
    more » « less
  2. Abstract Fatty acid amide hydrolase (FAAH) is a widely conserved amidase in eukaryotes, perhaps best known for inactivating N -acylethanolamine lipid mediators. However, FAAH enzymes hydrolyze a wide range of acylamide substrates. Analysis of FAAHs from multiple angiosperm species revealed two conserved phylogenetic groups that differed in key conserved residues in the substrate binding pocket. While the foundation group of plant FAAHs, designated FAAH1, has been studied at the structural and functional level in Arabidopsis thaliana , nothing is known about FAAH2 members. Here, we combined computational and biochemical approaches to compare the structural and enzymatic properties of two FAAH isoforms in the legume Medicago truncatula designated MtFAAH1 and MtFAAH2a. Differences in structural and physicochemical properties of the substrate binding pockets, predicted from homology modeling, molecular docking, and molecular dynamic simulation experiments, suggested that these two FAAH isoforms would exhibit differences in their amidohydrolase activity profiles. Indeed, kinetic studies of purified, recombinant MtFAAHs indicated a reciprocal preference for acylamide substrates with MtFAAH1 more efficiently utilizing long-chain acylamides, and MtFAAH2a more efficiently hydrolyzing short-chain and aromatic acylamides. This first report of the enzymatic behavior of two phylogenetically distinct plant FAAHs will provide a foundation for further investigations regarding FAAH isoforms in legumes and other plant species. 
    more » « less
  3. Abstract

    During the past two decades, glucosinolate (GLS) metabolic pathways have been under extensive studies because of the importance of the specialized metabolites in plant defense against herbivores and pathogens. The studies have led to a nearly complete characterization of biosynthetic genes in the reference plantArabidopsis thaliana. Before methionine incorporation into the core structure of aliphatic GLS, it undergoes chain-elongation through an iterative three-step process recruited from leucine biosynthesis. Although enzymes catalyzing each step of the reaction have been characterized, the regulatory mode is largely unknown. In this study, using three independent approaches, yeast two-hybrid (Y2H), coimmunoprecipitation (Co-IP) and bimolecular fluorescence complementation (BiFC), we uncovered the presence of protein complexes consisting of isopropylmalate isomerase (IPMI) and isopropylmalate dehydrogenase (IPMDH). In addition, simultaneous decreases in both IPMI and IPMDH activities in aleuc:ipmdh1double mutants resulted in aggregated changes of GLS profiles compared to eitherleucoripmdh1single mutants. Although the biological importance of the formation of IPMI and IPMDH protein complexes has not been documented in any organisms, these complexes may represent a new regulatory mechanism of substrate channeling in GLS and/or leucine biosynthesis. Since genes encoding the two enzymes are widely distributed in eukaryotic and prokaryotic genomes, such complexes may have universal significance in the regulation of leucine biosynthesis.

     
    more » « less
  4. Abstract

    Protein kinase C (PKC) family members are multi‐domain proteins whose function is exquisitely tuned by interdomain interactions that control the spatiotemporal dynamics of their signaling. Despite extensive mechanistic studies on this family of enzymes, no structure of a full‐length enzyme that includes all domains has been solved. Here, we take into account the biochemical mechanisms that control autoinhibition, the properties of each individual domain, and previous structural studies to propose a unifying model for the general architecture of PKC family members. This model shows how the C2 domains of conventional and novel PKC isozymes, which have different topologies and different positions in the primary structure, can occupy the same position in the tertiary structure of the kinase. This common architecture of conventional and novel PKC isozymes provides a framework for understanding how disease‐associated mutations impair PKC function.

     
    more » « less
  5. ABSTRACT Acetylation is a broadly conserved mechanism of covalently modifying the proteome to precisely control protein activity. In bacteria, central metabolic enzymes and regulatory proteins, including those involved in virulence, can be targeted for acetylation. In this study, we directly link a putative acetylation system to metabolite-dependent virulence in the pathogen Vibrio cholerae . We demonstrate that the cobB and yfiQ genes, which encode homologs of a deacetylase and an acetyltransferase, respectively, modulate V. cholerae metabolism of acetate, a bacterially derived short-chain fatty acid with important physiological roles in a diversity of host organisms. In Drosophila melanogaster , a model arthropod host for V. cholerae infection, the pathogen consumes acetate within the gastrointestinal tract, which contributes to fly mortality. We show that deletion of cobB impairs growth on acetate minimal medium, delays the consumption of acetate from rich medium, and reduces virulence of V. cholerae toward Drosophila . These impacts can be reversed by complementing cobB or by introducing a deletion of yfiQ into the Δ cobB background. We further show that cobB controls the accumulation of triglycerides in the Drosophila midgut, which suggests that cobB directly modulates metabolite levels in vivo . In Escherichia coli K-12, yfiQ is upregulated by cAMP-cAMP receptor protein (CRP), and we identified a similar pattern of regulation in V. cholerae , arguing that the system is activated in response to similar environmental cues. In summary, we demonstrate that proteins likely involved in acetylation can modulate the outcome of infection by regulating metabolite exchange between pathogens and their colonized hosts. IMPORTANCE The bacterium Vibrio cholerae causes severe disease in humans, and strains can persist in the environment in association with a wide diversity of host species. By investigating the molecular mechanisms that underlie these interactions, we can better understand constraints affecting the ecology and evolution of this global pathogen. The Drosophila model of Vibrio cholerae infection has revealed that bacterial regulation of acetate and other small metabolites from within the fly gastrointestinal tract is crucial for its virulence. Here, we demonstrate that genes that may modify the proteome of V. cholerae affect virulence toward Drosophila , most likely by modulating central metabolic pathways that control the consumption of acetate as well as other small molecules. These findings further highlight the many layers of regulation that tune bacterial metabolism to alter the trajectory of interactions between bacteria and their hosts. 
    more » « less