Cellulose, the main component of the plant cell wall, is synthesized by the multimeric cellulose synthase (CESA) complex (CSC). In plant cells, CSCs are assembled in the endoplasmic reticulum or Golgi and transported through the endomembrane system to the plasma membrane (PM). However, how CESA catalytic activity or conserved motifs around the catalytic core influence vesicle trafficking or protein dynamics is not well understood. Here, we used yellow fluorescent protein (YFP)-tagged AtCESA6 and created 18 mutants in key motifs of the catalytic domain to analyze how they affected seedling growth, cellulose biosynthesis, complex formation, and CSC dynamics and trafficking in Arabidopsis thaliana. Seedling growth and cellulose content were reduced by nearly all mutations. Moreover, mutations in most conserved motifs slowed CSC movement in the PM as well as delivery of CSCs to the PM. Interestingly, mutations in the DDG and QXXRW motifs affected YFP-CESA6 abundance in the Golgi. These mutations also perturbed post-Golgi trafficking of CSCs. The 18 mutations were divided into 2 groups based on their phenotypes; we propose that Group I mutations cause CSC trafficking defects, whereas Group II mutations, especially in the QXXRW motif, affect protein folding and/or CSC rosette formation. Collectively, our results demonstrate that the CESA6 catalytic domain is essential for cellulose biosynthesis as well as CSC formation, protein folding and dynamics, and vesicle trafficking.
Cellulose is an essential component of plant cell walls and an economically important source of food, paper, textiles, and biofuel. Despite its economic and biological significance, the regulation of cellulose biosynthesis is poorly understood. Phosphorylation and dephosphorylation of cellulose synthases (CESAs) were shown to impact the direction and velocity of cellulose synthase complexes (CSCs). However, the protein kinases that phosphorylate CESAs are largely unknown. We conducted research in In this study, we used yeast two‐hybrid, protein biochemistry, genetics, and live‐cell imaging to reveal the role of calcium‐dependent protein kinase32 (CPK32) in the regulation of cellulose biosynthesis in We identified CPK32 using CESA3 as a bait in a yeast two‐hybrid assay. We showed that CPK32 phosphorylates CESA3 while it interacts with both CESA1 and CESA3. Overexpressing functionally defective CPK32 variant and phospho‐dead mutation of CESA3 led to decreased motility of CSCs and reduced crystalline cellulose content in etiolated seedlings. Deregulation of CPKs impacted the stability of CSCs. We uncovered a new function of CPKs that regulates cellulose biosynthesis and a novel mechanism by which phosphorylation regulates the stability of CSCs.
- Award ID(s):
- 1951007
- PAR ID:
- 10430943
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 239
- Issue:
- 6
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2212-2224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract The largest subunit of RNA polymerase II (Pol II) has an unusual carboxyl‐terminal domain (CTD). This domain is composed of a tandemly repeating heptapeptide, Y1S2P3T4S5P6S7, that has multiple roles in regulating Pol II function and processing newly synthesized RNA. Transient phosphorylation of Ser2 and Ser5 of the Y
S 2 PTS 5 PS repeat have well‐defined roles in recruiting different protein complexes and coordinating sequential steps in gene transcription. As such, these phospho‐marks encipher a molecular recognition code, colloquially termed the CTD code. In contrast, the contribution of phospho‐Threonine 4 (pThr4/pT4) to the CTD code remains opaque and contentious. Fuelling the debate on the relevance of this mark to gene expression are the findings that replacing Thr4 with a valine or alanine has varied impact on cellular function in different species and independent proteomic analyses disagree on the relative abundance of pThr4 marks. Yet, substitution with negatively charged residues is lethal and even benign mutations selectively disrupt synthesis and 3′ processing of distinct sets of coding and non‐coding transcripts. Suggestive of non‐canonical roles, pThr4 marked Pol II regulates distinct gene classes in a species‐ and signal‐responsive manner. Hinting at undiscovered roles of this elusive mark, multiple signal‐responsive kinases phosphorylate Thr4 at target genes. Here, we focus on this under‐explored residue and postulate that the pThr4 mark is superimposed on the canonical CTD code to selectively regulate expression of targeted genes without perturbing genome‐wide transcriptional processes.This article is categorized under:
RNA Processing > 3′ End Processing
RNA Processing > Processing of Small RNAs
RNA Processing > Splicing Regulation/Alternative Splicing
-
Summary DNA methylation plays crucial roles in cellular development and stress responses through gene regulation and genome stability control. Precise regulation of DOMAINS REARRANGED METHYLTRANSFERASE 2 (DRM2), the
de novo Arabidopsis DNA methyltransferase, is crucial to maintain DNA methylation homeostasis to ensure genome integrity. Compared with the extensive studies on DRM2 targeting mechanisms, little information is known regarding the quality control of DRM2 itself.Here, we conducted yeast two‐hybrid screen assay and identified an E3 ligase, COP9 INTERACTING F‐BOX KELCH 1 (CFK1), as a novel DRM2‐interacting partner and targets DRM2 for degradation via the ubiquitin‐26S proteasome pathway in
Arabidopsis thaliana . We also performed whole genome bisulfite sequencing (BS‐seq) to determine the biological significance of CFK1‐mediated DRM2 degradation.Loss‐of‐function
CFK1 leads to increased DRM2 protein abundance and overexpression of CFK1 showed reduced DRM2 protein levels. Consistently, CFK1 overexpression induces genome‐wide CHH hypomethylation and transcriptional de‐repression at specific DRM2 target loci.This study uncovered a distinct mechanism regulating
de novo DNA methyltransferase by CFK1 to control DNA methylation level. -
Summary SUMOylation as one of the protein post‐translational modifications plays crucial roles in multiple biological processes of eukaryotic organisms.
Botrytis cinerea is a devastating fungal pathogen and capable of infecting plant hosts at low temperature. However, the molecular mechanisms of low‐temperature adaptation are largely unknown in fungi.Combining with biochemical methods and biological analyses, we report that SUMOylation regulates pathogen survival at low temperature and oxidative DNA damage response during infection in
B. cinerea . The heat shock protein (Hsp70) BcSsb and E3 ubiquitin ligase BcRad18 were identified as substrates of SUMOylation; moreover, their SUMOylation both requires a single unique SUMO‐interacting motif (SIM).SUMOylated BcSsb regulates β‐tubulin accumulation, thereby affecting the stability of microtubules and consequently mycelial growth at low temperature. On the contrary, SUMOylated BcRad18 modulates mono‐ubiquitination of the sliding clamp protein proliferating cell nuclear antigen (PCNA), which is involved in response to oxidative DNA damage during infection.
Our study uncovers the molecular mechanisms of SUMOylation‐mediated low‐temperature survival and oxidative DNA damage tolerance during infection in a devastating fungal pathogen, which provides novel insights into low‐temperature adaptation and pathogenesis for postharvest pathogens as well as new targets for inhibitor invention in disease control.
-
Summary Low concentrations of CO2cause stomatal opening, whereas [CO2] elevation leads to stomatal closure. Classical studies have suggested a role for Ca2+and protein phosphorylation in CO2‐induced stomatal closing. Calcium‐dependent protein kinases (CPKs) and calcineurin‐B‐like proteins (CBLs) can sense and translate cytosolic elevation of the second messenger Ca2+into specific phosphorylation events. However, Ca2+‐binding proteins that function in the stomatal CO2response remain unknown.
Time‐resolved stomatal conductance measurements using intact plants, and guard cell patch‐clamp experiments were performed.
We isolated
cpk quintuple mutants and analyzed stomatal movements in response to CO2, light and abscisic acid (ABA). Interestingly, we found thatcpk3/5/6/11/23 quintuple mutant plants, but not other analyzedcpk quadruple/quintuple mutants, were defective in high CO2‐induced stomatal closure and, unexpectedly, also in low CO2‐induced stomatal opening. Furthermore, K+‐uptake‐channel activities were reduced incpk3/5/6/11/23 quintuple mutants, in correlation with the stomatal opening phenotype. However, light‐mediated stomatal opening remained unaffected, and ABA responses showed slowing in some experiments. By contrast, CO2‐regulated stomatal movement kinetics were not clearly affected in plasma membrane‐targetedcbl1/4/5/8/9 quintuple mutant plants.Our findings describe combinatorial
cpk mutants that function in CO2control of stomatal movements and support the results of classical studies showing a role for Ca2+in this response.