skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Catalyzing next-generation Artificial Intelligence through NeuroAI
Abstract Neuroscience has long been an essential driver of progress in artificial intelligence (AI). We propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI. A core component of this is the embodied Turing test, which challenges AI animal models to interact with the sensorimotor world at skill levels akin to their living counterparts. The embodied Turing test shifts the focus from those capabilities like game playing and language that are especially well-developed or uniquely human to those capabilities – inherited from over 500 million years of evolution – that are shared with all animals. Building models that can pass the embodied Turing test will provide a roadmap for the next generation of AI.  more » « less
Award ID(s):
2124136 1922658 1707400
PAR ID:
10431084
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents an innovative testing framework, testFAILS, designed for the rigorous evaluation of AI Linguistic Systems, with a particular emphasis on various iterations of ChatGPT. Leveraging orthogonal array coverage, this framework provides a robust mechanism for assessing AI systems, addressing the critical question, "How should we evaluate AI?" While the Turing test has traditionally been the benchmark for AI evaluation, we argue that current publicly available chatbots, despite their rapid advancements, have yet to meet this standard. However, the pace of progress suggests that achieving Turing test-level performance may be imminent. In the interim, the need for effective AI evaluation and testing methodologies remains paramount. Our research, which is ongoing, has already validated several versions of ChatGPT, and we are currently conducting comprehensive testing on the latest models, including ChatGPT-4, Bard and Bing Bot, and the LLaMA model. The testFAILS framework is designed to be adaptable, ready to evaluate new bot versions as they are released. Additionally, we have tested available chatbot APIs and developed our own application, AIDoctor, utilizing the ChatGPT-4 model and Microsoft Azure AI technologies. 
    more » « less
  2. We argue that the dominant approach to explainable AI for explaining image classification, annotating images with heatmaps, provides little value for users unfamiliar with deep learning. We argue that explainable AI for images should produce output like experts produce when communicating with one another, with apprentices, and with novices. We provide an expanded set of goals of explainable AI systems and propose a Turing Test for explainable AI. 
    more » « less
  3. Virtual reality is progressively more widely used to support embodied AI agents, such as robots, which frequently engage in ‘sim-to-real’ based learning approaches. At the same time, tools such as large vision-and-language models offer new capabilities that tie into a wide variety of tasks and capabilities. In order to understand how such agents can learn from simulated environments, we explore a language model’s ability to recover the type of object represented by a photorealistic 3D model as a function of the 3D perspective from which the model is viewed. We used photogrammetry to create 3D models of commonplace objects and rendered 2D images of these models from an fixed set of 420 virtual camera perspectives. A well-studied image and language model (CLIP) was used to generate text (i.e., prompts) corresponding to these images. Using multiple instances of various object classes, we studied which camera perspectives were most likely to return accurate text categorizations for each class of object. 
    more » « less
  4. This article reviews recent progress in the development of the computing framework Vector Symbolic Architectures (also known as Hyperdimensional Computing). This framework is well suited for implementation in stochastic, nanoscale hardware and it naturally expresses the types of cognitive operations required for Artificial Intelligence (AI). We demonstrate in this article that the ring-like algebraic structure of Vector Symbolic Architectures offers simple but powerful operations on highdimensional vectors that can support all data structures and manipulations relevant in modern computing. In addition, we illustrate the distinguishing feature of Vector Symbolic Architectures, “computing in superposition,” which sets it apart from conventional computing. This latter property opens the door to efficient solutions to the difficult combinatorial search problems inherent in AI applications. Vector Symbolic Architectures are Turing complete, as we show, and we see them acting as a framework for computing with distributed representations in myriad AI settings. This paper serves as a reference for computer architects by illustrating techniques and philosophy of VSAs for distributed computing and relevance to emerging computing hardware, such as neuromorphic computing. 
    more » « less
  5. Smart phones have revolutionized the availability of computing to the consumer. Recently, smart phones have been aggressively integrating artificial intelligence (AI) capabilities into their devices. The custom designed processors for the latest phones integrate incredibly capable and energy efficient graphics processors (GPUs) and tensor processors (TPUs) to accommodate this emerging AI workload and on-device inference. Unfor- tunately, smart phones are far from sustainable and have a substantial carbon footprint that continues to be dominated by environmental impacts from their manufacture and far less so by the energy required to power their operation. In this paper we explore the possibility of reversing the trend to increase the dedicated silicon dedicated to emerging application workloads in the phone. Instead we consider how in-memory processing using the DRAM already present in the phone could be used in place of dedicated GPU/TPU devices for AI inference. We explore the potential savings in embodied carbon that could be possible with this tradeoff and provide some analysis of the potential of in- memory computing to compete with these accelerators. While it may not be possible to achieve the same throughput, we suggest that the responsiveness to the user may be sufficient using in- memory computing, while both the embodied and operational carbon footprints could be improved. Our approach can save circa 10–15kgCO2e. 
    more » « less