skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Proportional Component Order Network Connectivity
We introduce a new measure of network reliability related to the order of the largest component. This new connectivity measure considers a network to be operational if there is a component or order at least some fixed proportion, r, of the original order. Thus, the network is in a failure state if all components are sufficiently small. In this paper, we consider the parameters with vertex deletions as well as edge deletions for particular graph classes. We also find the minimum values of the parameter for graphs with a fixed size and order. We end with a discussion and some conjectures for the maximum value of the parameter for graphs with a fixed size and order.  more » « less
Award ID(s):
1852378
PAR ID:
10431086
Author(s) / Creator(s):
; ; ;
Editor(s):
Harrington, J.; Wong, T.
Date Published:
Journal Name:
Communications on number theory and combinatorial theory
Volume:
3
ISSN:
2832-2657
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider distributed consensus in networks where the agents have integrator dynamics of order two or higher (n>=2). We assume all feedback to be localized in the sense that each agent has a bounded number of neighbors and consider a scaling of the network through the addition of agents in a modular manner, i.e., without re-tuning controller gains upon addition. We show that standard consensus algorithms, which rely on relative state feedback, are subject to what we term scale fragilities, meaning that stability is lost as the network scales. For high-order agents (n>=3), we prove that no consensus algorithm with fixed gains can achieve consensus in networks of any size. That is, while a given algorithm may allow a small network to converge, it causes instability if the network grows beyond a certain finite size. This holds in families of network graphs whose algebraic connectivity, that is, the smallest non-zero Laplacian eigenvalue, is decreasing towards zero in network size (e.g. all planar graphs). For second-order consensus (n=2) we prove that the same scale fragility applies to directed graphs that have a complex Laplacian eigenvalue approaching the origin (e.g. directed ring graphs). The proofs for both results rely on Routh–Hurwitz criteria for complex-valued polynomials and hold true for general directed network graphs. We survey classes of graphs subject to these scale fragilities, discuss their scaling constants, and finally prove that a sub-linear scaling of nodal neighborhoods can suffice to overcome the issue. 
    more » « less
  2. Meka, Raghu (Ed.)
    While graphs and abstract data structures can be large and complex, practical instances are often regular or highly structured. If the instance has sufficient structure, we might hope to compress the object into a more succinct representation. An efficient algorithm (with respect to the compressed input size) could then lead to more efficient computations than algorithms taking the explicit, uncompressed object as input. This leads to a natural question: when does knowing the input instance has a more succinct representation make computation easier? We initiate the study of the computational complexity of problems on factored graphs: graphs that are given as a formula of products and unions on smaller graphs. For any graph problem, we define a parameterized version that takes factored graphs as input, parameterized by the number of (smaller) ordinary graphs used to construct the factored graph. In this setting, we characterize the parameterized complexity of several natural graph problems, exhibiting a variety of complexities. We show that a decision version of lexicographically first maximal independent set is XP-complete, and therefore unconditionally not fixed-parameter tractable (FPT). On the other hand, we show that clique counting is FPT. Finally, we show that reachability is XNL-complete. Moreover, XNL is contained in FPT if and only if NL is contained in some fixed polynomial time. 
    more » « less
  3. We establish a list of characterizations of bounded twin-width for hereditary classes of totally ordered graphs: as classes of at most exponential growth studied in enumerative combinatorics, as monadically NIP classes studied in model theory, as classes that do not transduce the class of all graphs studied in finite model theory, and as classes for which model checking first-order logic is fixed-parameter tractable studied in algorithmic graph theory. This has several consequences. First, it allows us to show that every hereditary class of ordered graphs either has at most exponential growth, or has at least factorial growth. This settles a question first asked by Balogh, Bollobás, and Morris [Eur. J. Comb. ’06] on the growth of hereditary classes of ordered graphs, generalizing the Stanley-Wilf conjecture/Marcus-Tardos theorem. Second, it gives a fixed-parameter approximation algorithm for twin-width on ordered graphs. Third, it yields a full classification of fixed-parameter tractable first-order model checking on hereditary classes of ordered binary structures. Fourth, it provides a model-theoretic characterization of classes with bounded twin-width. Finally, it settles our small conjecture [SODA ’21] in the case of ordered graphs. 
    more » « less
  4. We study the fully dynamic All-Pairs Shortest Paths (APSP) problem in undirected edge-weighted graphs. Given an n-vertex graph G with non-negative edge lengths, that undergoes an online sequence of edge insertions and deletions, the goal is to support approximate distance queries and shortest-path queries. We provide a deterministic algorithm for this problem, that, for a given precision parameter є, achieves approximation factor (loglogn)2O(1/є3), and has amortized update time O(nєlogL) per operation, where L is the ratio of longest to shortest edge length. Query time for distance-query is O(2O(1/є)· logn· loglogL), and query time for shortest-path query is O(|E(P)|+2O(1/є)· logn· loglogL), where P is the path that the algorithm returns. To the best of our knowledge, even allowing any o(n)-approximation factor, no adaptive-update algorithms with better than Θ(m) amortized update time and better than Θ(n) query time were known prior to this work. We also note that our guarantees are stronger than the best current guarantees for APSP in decremental graphs in the adaptive-adversary setting. In order to obtain these results, we consider an intermediate problem, called Recursive Dynamic Neighborhood Cover (RecDynNC), that was formally introduced in [Chuzhoy, STOC ’21]. At a high level, given an undirected edge-weighted graph G undergoing an online sequence of edge deletions, together with a distance parameter D, the goal is to maintain a sparse D-neighborhood cover of G, with some additional technical requirements. Our main technical contribution is twofolds. First, we provide a black-box reduction from APSP in fully dynamic graphs to the RecDynNC problem. Second, we provide a new deterministic algorithm for the RecDynNC problem, that, for a given precision parameter є, achieves approximation factor (loglogm)2O(1/є2), with total update time O(m1+є), where m is the total number of edges ever present in G. This improves the previous algorithm of [Chuzhoy, STOC ’21], that achieved approximation factor (logm)2O(1/є) with similar total update time. Combining these two results immediately leads to the deterministic algorithm for fully-dynamic APSP with the guarantees stated above. 
    more » « less
  5. null (Ed.)
    We study games with nonlinear best response functions played on a network consisting of disjoint communities. Prior works on network games have identified conditions to guarantee the uniqueness and stability of Nash equilibria in a network without any community structure. In this paper we are interested in accomplishing the same for networks with a community structure; it turns out that these conditions are much easier to verify with certain community structures. Specifically, we consider multipartite graphs and show that the uniqueness and stability of Nash equilibria are related to matrices which are potentially much lower in dimension, on the order of the number of communities, compared to same-size networks without a multipartite structure, in which case such matrices have a dimension the size of the network. We further introduce a new notion of degree centrality to measure the importance and influence of a community in such a network. We show that this notion enables us to find new conditions for uniqueness and stability of Nash equilibria. 
    more » « less