skip to main content


Title: Nonlinear Reactor Design Optimization With Embedded Microkinetic Model Information
Despite the success of multiscale modeling in science and engineering, embedding molecular-level information into nonlinear reactor design and control optimization problems remains challenging. In this work, we propose a computationally tractable scale-bridging approach that incorporates information from multi-product microkinetic (MK) models with thousands of rates and chemical species into nonlinear reactor design optimization problems. We demonstrate reduced-order kinetic (ROK) modeling approaches for catalytic oligomerization in shale gas processing. We assemble a library of six candidate ROK models based on literature and MK model structure. We find that three metrics—quality of fit (e.g., mean squared logarithmic error), thermodynamic consistency (e.g., low conversion of exothermic reactions at high temperatures), and model identifiability—are all necessary to train and select ROK models. The ROK models that closely mimic the structure of the MK model offer the best compromise to emulate the product distribution. Using the four best ROK models, we optimize the temperature profiles in staged reactors to maximize conversions to heavier oligomerization products. The optimal temperature starts at 630–900K and monotonically decreases to approximately 560 K in the final stage, depending on the choice of ROK model. For all models, staging increases heavier olefin production by 2.5% and there is minimal benefit to more than four stages. The choice of ROK model, i.e., model-form uncertainty, results in a 22% difference in the objective function, which is twice the impact of parametric uncertainty; we demonstrate sequential eigendecomposition of the Fisher information matrix to identify and fix sloppy model parameters, which allows for more reliable estimation of the covariance of the identifiable calibrated model parameters. First-order uncertainty propagation determines this parametric uncertainty induces less than a 10% variability in the reactor optimization objective function. This result highlights the importance of quantifying model-form uncertainty, in addition to parametric uncertainty, in multi-scale reactor and process design and optimization. Moreover, the fast dynamic optimization solution times suggest the ROK strategy is suitable for incorporating molecular information in sequential modular or equation-oriented process simulation and optimization frameworks.  more » « less
Award ID(s):
1647722
NSF-PAR ID:
10431146
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Frontiers in Chemical Engineering
Volume:
4
ISSN:
2673-2718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a multimodel analysis for mechanistic hypothesis testing in landscape evolution theory. The study site is a watershed with well‐constrained initial and boundary conditions in which a river network locally incised 50 m over the last 13 ka. We calibrate and validate a set of 37 landscape evolution models designed to hierarchically test elements of complexity from four categories: hillslope processes, channel processes, surface hydrology, and representation of geologic materials. Comparison of each model to a base model, which uses stream power channel incision, uniform lithology, hillslope transport by linear diffusion, and surface water discharge proportional to drainage area, serves as a formal test of which elements of complexity improve model performance. Model fit is assessed using an objective function based on a direct difference between observed and simulated modern topography. A hybrid optimization scheme identifies optimal parameters and uncertainty. Multimodel analysis determines which elements of complexity improve simulation performance. Validation tests which model improvements persist when models are applied to an independent watershed. The three most important model elements are (1) spatial variation in lithology (differentiation between shale and glacial till), (2) a fluvial erosion threshold, and (3) a nonlinear relationship between slope and hillslope sediment flux. Due to nonlinear interactions between model elements, some process representations (e.g., nonlinear hillslopes) only become important when paired with the inclusion of other processes (e.g., erosion thresholds). This emphasizes the need for caution in identifying the minimally sufficient process set. Our approach provides a general framework for hypothesis testing in landscape evolution.

     
    more » « less
  2. Abstract

    Radio-frequency quadrupoles (RFQs) are multi-purpose linear particle accelerators that simultaneously bunch and accelerate charged particle beams. They are ubiquitous in accelerator physics, especially as injectors to higher-energy machines, owing to their impressive efficiency. The design and optimization of these devices can be lengthy due to the need to repeatedly perform high-fidelity simulations. Several recent papers have demonstrated that machine learning can be used to build surrogate models (fast-executing replacements of computationally costly beam simulations) for order-of-magnitude computing time speedups. However, while these pilot studies are encouraging, there is room to improve their predictive accuracy. Particularly, beam summary statistics such as emittances (an important figure of merit in particle accelerator physics) have historically been challenging to predict. For the first time, we present a surrogate model trained on 200 000 samples that yields<6% mean average percent error for the predictions of all relevant beam output parameters from defining RFQ design parameters, solving the problem of poor emittance predictions by identifying and including hidden variables which were not accounted for previously. These surrogate models were made possible by using the Julia language and GPU computing; we briefly discuss both. We demonstrate the utility of surrogate modeling by performing a multi-objective optimization using our best model as a callback in the objective function to select an optimal RFQ design. We consider trade-offs in RFQ performance for various choices of Pareto-optimal design variables—common issues for any multi-objective optimization scheme. Lastly, we make recommendations for input data preparation, selection, and neural network architectures that pave the way for future development of production-capable surrogate models for RFQs and other particle accelerators.

     
    more » « less
  3. Abstract

    Multireservoir systems are designed to serve multiple conflicting demands over varying time scales that may be out of phase with the system's hydroclimatic inputs. Adaptive, nonlinear reservoir control policies are often best suited to serve these needs. However, nonlinear operating policies are hard to interpret, so water managers tend to favor simple, static rules that may not effectively manage conflicts between the system's multisectoral demands. In this study, we introduce an analytical framework for opening the black box of optimized nonlinear operating policies, decomposing their time‐varying information sensitivities to show how their adaptive and coordinated release prescriptions better manage hydrologic variability. Interestingly, these information sensitivities vary significantly across policies depending on how they negotiate tradeoffs between conflicting objectives. We illustrate this analysis in the Red River basin of Vietnam, where four major reservoirs serve to protect the capital of Hanoi from flooding while also providing the surrounding region with electric power and meeting multisectoral water demands for the agricultural and urban economies. Utilizing Evolutionary Multi‐Objective Direct Policy Search, we are able to design policies that, using the same information as sequential if/then/else‐based operating guidelines developed by the government, outperform these traditional rules with respect to every objective. Policy diagnostics using time‐varying sensitivity analysis illustrate how the Evolutionary Multi‐Objective Direct Policy Search operations better adapt and coordinate information use to reduce food‐energy‐water conflicts in the basin. These findings accentuate the benefits of transitioning to dynamic operating policies in order to manage evolving hydroclimatic variability and socioeconomic demands in multipurpose reservoir networks.

     
    more » « less
  4. The collective operation of robots, such as unmanned aerial vehicles (UAVs) operating as a team or swarm, is affected by their individual capabilities, which in turn is dependent on their physical design, aka morphology. However, with the exception of a few (albeit ad hoc) evolutionary robotics methods, there has been very little work on understanding the interplay of morphology and collective behavior. There is especially a lack of computational frameworks to concurrently search for the robot morphology and the hyper-parameters of their behavior model that jointly optimize the collective (team) performance. To address this gap, this paper proposes a new co-design framework. Here the exploding computational cost of an otherwise nested morphology/behavior co-design is effectively alleviated through the novel concept of “talent” metrics; while also allowing significantly better solutions compared to the typically sub-optimal sequential morphology → behavior design approach. This framework comprises four major steps: talent metrics selection, talent Pareto exploration (a multi-objective morphology optimization process), behavior optimization, and morphology finalization. This co-design concept is demonstrated by applying it to design UAVs that operate as a team to localize signal sources, e.g., in victim search and hazard localization. Here, the collective behavior is driven by a recently reported batch Bayesian search algorithm called Bayes-Swarm. Our case studies show that the outcome of co-design provides significantly higher success rates in signal source localization compared to a baseline design, across a variety of signal environments and teams with 6 to 15 UAVs. Moreover, this co-design process provides two orders of magnitude reduction in computing time compared to a projected nested design approach. 
    more » « less
  5. Over the last two decades, robust optimization has emerged as a popular means to address decision-making problems affected by uncertainty. This includes single-stage and multi-stage problems involving real-valued and/or binary decisions and affected by exogenous (decision-independent) and/or endogenous (decision-dependent) uncertain parameters. Robust optimization techniques rely on duality theory potentially augmented with approximations to transform a (semi-)infinite optimization problem to a finite program, the robust counterpart. Whereas writing down the model for a robust optimization problem is usually a simple task, obtaining the robust counterpart requires expertise. To date, very few solutions are available that can facilitate the modeling and solution of such problems. This has been a major impediment to their being put to practical use. In this paper, we propose ROC++, an open-source C++ based platform for automatic robust optimization, applicable to a wide array of single-stage and multi-stage robust problems with both exogenous and endogenous uncertain parameters, that is easy to both use and extend. It also applies to certain classes of stochastic programs involving continuously distributed uncertain parameters and endogenous uncertainty. Our platform naturally extends existing off-the-shelf deterministic optimization platforms and offers ROPy, a Python interface in the form of a callable library, and the ROB file format for storing and sharing robust problems. We showcase the modeling power of ROC++ on several decision-making problems of practical interest. Our platform can help streamline the modeling and solution of stochastic and robust optimization problems for both researchers and practitioners. It comes with detailed documentation to facilitate its use and expansion. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . Summary of Contribution: The paper “ROC++: Robust Optimization in C++” proposes a new open-source C++ based platform for modeling, automatically reformulating, and solving robust optimization problems. ROC++ can address both single-stage and multi-stage problems involving exogenous and/or endogenous uncertain parameters and real- and/or binary-valued adaptive variables. The ROC++ modeling language is similar to the one provided for the deterministic case by state-of-the-art deterministic optimization solvers. ROC++ comes with detailed documentation to facilitate its use and expansion. It also offers ROPy, a Python interface in the form of a callable library. The latest version of ROC++ can be downloaded from https://sites.google.com/usc.edu/robust-opt-cpp/ . History: Accepted by Ted Ralphs, Area Editor for Software Tools. Funding: This material is based upon work supported by the National Science Foundation under Grant No. 1763108. This support is gratefully acknowledged. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplementary Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2022.1209 ) or is available from the IJOC GitHub software repository ( https://github.com/INFORMSJoC ) at ( https://dx.doi.org/10.5281/zenodo.6360996 ). 
    more » « less