Subantarctic Mode Water (SAMW) is one of the most important water masses globally in taking up anthropogenic heat and carbon dioxide. However, its long‐term changes in response to varying climatic conditions are not well understood. We use an ocean state estimate to analyze SAMW volume budgets for the period 1992 to 2017. They reveal a decadal SAMW volume reorganization comparable to the long‐term trend in Indian Ocean, and a multi‐decadal volume reorganization exceeding the long‐term trend in the Pacific. In both sectors, the SAMW reorganization exhibits a two‐layer density structure, with compensating volume changes of lighter and denser SAMW, driven by heat flux changes in the Indian sector and central Pacific and freshwater flux changes in the southeast Pacific. This variability is governed by a cumulative effect of surface flux anomalies associated with the Interdecadal Pacific Oscillation. Shorter‐term trends observed during the Argo period are largely explained by this variability.
more » « less- NSF-PAR ID:
- 10431347
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 50
- Issue:
- 14
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Abstract Using an eastern tropical Pacific pacemaker experiment called the Pacific Ocean–Global Atmosphere (POGA) run, this study investigated the internal variability in sea surface salinity (SSS) and its impacts on the assessment of long-term trends. By constraining the eastern tropical Pacific sea surface temperature variability with observations, the POGA experiment successfully simulated the observed variability of SSS. The long-term trend in POGA SSS shows a general pattern of salty regions becoming saltier (e.g., the northern Atlantic) and fresh regions becoming fresher, which agrees with previous studies. The 1950–2012 long-term trend in SSS is modulated by the internal variability associated with the interdecadal Pacific oscillation (IPO). Due to this variability, there are some regional discrepancies in the SSS 1950–2012 long-term change between POGA and the free-running simulation forced with historical radiative forcing, especially for the western tropical Pacific and southeastern Indian Ocean. Our analysis shows that the tropical Pacific cooling and intensified Walker circulation caused the SSS to increase in the western tropical Pacific and decrease in the southeastern Indian Ocean during the 20-yr period of 1993–2012. This decadal variability has led to large uncertainties in the estimation of radiative-forced trends on a regional scale. For the 63-yr period of 1950–2012, the IPO caused an offset of ~40% in the radiative-forced SSS trend in the western tropical Pacific and ~170% enhancement in the trend in the southeastern Indian Ocean. Understanding and quantifying the contribution of internal variability to SSS trends helps improve the skill for estimates and prediction of salinity/water cycle changes.more » « less
-
Wintertime surface ocean heat loss is the key process driving the formation of Subantarctic Mode Water (SAMW), but there are few direct observations of heat fluxes, particularly during winter. The Ocean Observatories Initiative (OOI) Southern Ocean mooring in the southeast Pacific Ocean and the Southern Ocean Flux Station (SOFS) in the southeast Indian Ocean provide the first concurrent, multiyear time series of air–sea fluxes in the Southern Ocean from two key SAMW formation regions. In this work we compare drivers of wintertime heat loss and SAMW formation by comparing air–sea fluxes and mixed layers at these two mooring locations. A gridded Argo product and the ERA5 reanalysis product provide temporal and spatial context for the mooring observations. Turbulent ocean heat loss is on average 1.5 times larger in the southeast Indian (SOFS) than in the southeast Pacific (OOI), with stronger extreme heat flux events in the southeast Indian leading to larger cumulative winter ocean heat loss. Turbulent heat loss events in the southeast Indian (SOFS) occur in two atmospheric regimes (cold air from the south or dry air circulating via the north), while heat loss events in the southeast Pacific (OOI) occur in a single atmospheric regime (cold air from the south). On interannual time scales, wintertime anomalies in net heat flux and mixed layer depth (MLD) are often correlated at the two sites, particularly when wintertime MLDs are anomalously deep. This relationship is part of a larger basin-scale zonal dipole in heat flux and MLD anomalies present in both the Indian and Pacific basins, associated with anomalous meridional atmospheric circulation.
-
Abstract As the major sink of anthropogenic heat, the Southern Ocean has shown quasi-symmetric, deep-reaching warming since the mid-twentieth century. In comparison, the shorter-term heat storage pattern of the Southern Ocean is more complex and has notable impacts on regional climate and marine ecosystems. By analyzing observational datasets and climate model simulations, this study reveals that the Southern Ocean exhibits prominent decadal (>8 years) variability extending to ∼700-m depth and is characterized by out-of-phase changes in the Pacific and Atlantic–Indian Ocean sectors. Changes in the Pacific sector are larger in magnitude than those in the Atlantic–Indian Ocean sectors and dominate the total heat storage of the Southern Ocean on decadal time scales. Instead of heat uptake through surface heat fluxes, these asymmetric variations arise primarily from wind-driven heat redistribution. Pacemaker and preindustrial simulations of the Community Earth System Model version 1 (CESM1) suggest that these variations in Southern Ocean winds arise primarily from natural variability of the tropical Pacific, as represented by the interdecadal Pacific oscillation (IPO). Through atmospheric teleconnection, the positive phase of the IPO gives rise to higher-than-normal sea level pressure and anticyclonic wind anomalies in the 50°–70°S band of the Pacific sector. These winds lead to warming of 0–700 m by driving the convergence of warm water. The opposite processes, involving cyclonic winds and upper-layer divergence, occur in the Atlantic–Indian Ocean sector. These findings aid our understanding of the time-varying heat storage of the Southern Ocean and provide useful implications on initialized decadal climate prediction.
-
null (Ed.)Abstract The deepest wintertime (Jul-Sep) mixed layers associated with Subantarctic Mode Water (SAMW) formation develop in the Indian and Pacific sectors of the Southern Ocean. In these two sectors the dominant interannual variability of both deep wintertime mixed layers and SAMW volume is a east-west dipole pattern in each basin. The variability of these dipoles are strongly correlated with the interannual variability of overlying winter quasi-stationary mean sea level pressure (MSLP) anomalies. Anomalously strong positive MSLP anomalies are found to result in the deepening of the wintertime mixed layers and an increase in the SAMW formation in the eastern parts of the dipoles in the Pacific and Indian sectors. These effects are due to enhanced cold southerly meridional winds, strengthened zonal winds and increased surface ocean heat loss. The opposite occurs in the western parts of the dipoles in these sectors. Conversely, strong negative MSLP anomalies result in shoaling (deepening) of the wintertime mixed layers and a decrease (increase) in SAMW formation in the eastern (western) regions. The MSLP variability of the Pacific and Indian basin anomalies are not always in phase, especially in years with a strong El Niño, resulting in different patterns of SAMW formation in the western vs. eastern parts of the Indian and Pacific sectors. Strong isopycnal depth and thickness anomalies develop in the SAMW density range in years with strong MSLP anomalies. When advected eastward, they act to precondition downstream SAMW formation in the subsequent winter.more » « less
-
Abstract Both a quasi‐biennial variability and an overall linearly increasing trend are identified in the Sub‐Antarctic Mode Water (SAMW) subduction rate across the Southern Hemisphere ocean, using the Argo data during 2005–2019. The quasi‐biennial variability is mainly due to variability of the mixed layer depth. Variability of wind stress curl in the SAMW formation regions associated with the Southern Annular Mode plays a critical role in generating the quasi‐biennial variability of the mixed layer depth and consequently the SAMW subduction rates. The SAMW subduction rate across the Southern Hemisphere ocean, long‐term mean totaling 56 Sv, has increased at 0.73 ± 0.65 Sv year−1over the past 15 years. The increase has directly contributed to the observed increase in the total SAMW volume. Much of this increasing trend can be explained by the deepening mixed layers, which in turn are primarily forced by the strengthening westerly winds under an increasing Southern Annular Mode.