skip to main content


Title: Data from: The role of Southeast Asian island topography on Indo-Pacific climate and silicate weathering
The modern configuration of the South East Asian Islands (SEAI) evolved over the last fifteen million years, as a result of subduction, arc magmatism, and arc-continent collisions, contributing to both increased land area and high topography.  The presence of the additional land area has been postulated to enhance convective rainfall, facilitating both increased silicate weathering and the development of the modern-day Walker circulation.  Using an Earth System Model in conjunction with a climate-silicate weathering model, we argue instead for a significant role of SEAI topography for both effects.  This dataset archives model output used in this investigation, including simulations using the Community Earth System Model version 1.2, and the climate-silicate weathering model GEOCLIM. All data are in Netcdf format, and were generated either by the Community Earth System Model 1.2 (Hurrell et al. 2013) or the climate-silicate weathering model GEOCLIM (Park et al. 2020).  Model output is organized into 4 tar files: 1) B1850C5.tar Contains model output for the fully coupled CESM1.2 runs, for 2D fields and for 3D pressure vertical velocity (W) between 10S-10N.  Monthly mean data for years 41-110 of the simulations.   Naming convention is No SEAI topography: B1850C5_noSEAItopo_y41-110.nc and B1850C5_noSEAItopo_W_y41-110.nc 50% SEAI topography: B1850C5_0.5SEAItopo_y41-110.nc and B1850C5_0.5SEAItopo_W_y41-110.nc 100% SEAI topography: B1850C5_y41-110.nc and B1850C5_W_y41-110.nc 150% SEAO topogaphy: B1850C5_1.5SEAItopo_y41-110.nc and B1850C5_1.5SEAItopo_W_y41-110.nc 2) E1850C5.tar Contains model output for the slab ocean CESM1.2 runs, for 2D fields and for 3D pressure vertical velocity (W) between 10S-10N.  Monthly mean data for years 21-50 of the simulations.  Naming convention is No SEAI topography: E1850C5_noSEAItopo_y21-50.nc and E1850C5_noSEAItopo_W_y21-50.nc 50% SEAI topography: E1850C5_0.5SEAItopo_y21-50.nc and E1850C5_0.5SEAItopo_W_y21-50.nc 100% SEAI topography: E1850C5_y21-50.nc and E1850C5_W_y21-50.nc 150% SEAO topogaphy:  E1850C5_1.5SEAItopo_y21-50.nc and E1850C5_1.5SEAItopo_W_y21-50.nc 3) GEOCLIM.tar Contains model output from the climate-silicate weathering model GEOCLIM.  Data is provided for all 573 parameter combinations.  All values are climatological annual means. All files contain these variables: GMST: global mean surface temperature (in K) atm_CO2_level: atmospheric pCO2 (in ppm) degassing: globally-integrated CO2 flux (in mol/yr) The files ending with 1xCO2.nc also contain these spatial fields: lithology fraction: fraction of land covered by a lithology class erosion: Regolith erosion rate (m/yr) weathering: Ca-Mg weathering rate (mol/m^2/yr) E1850C5_1xCO2.nc - GEOCLIM output using the Modern SEAI simulation as input, and for CO2 fixed to 286.7ppm.  E1850C5_noSEAI_1xCO2.nc - GEOCLIM output using the no SEAI simulation as input, and for CO2 fixed to 286.7ppm.  E1850C5_noSEAItopo_1xCO2.nc - GEOCLIM output using the flat SEAI simulation as input, and for CO2 fixed to 286.7ppm.  E1850C5_noSEAI_equil.nc - GEOCLIM output using the no SEAI simulation as input, and CO2 adjusted so that system is in carbon flux equilibrium.   E1850C5_noSEAItopo_flatSEAIslope_equil.nc - GEOCLIM output using the flat SEAI simulation as input, and CO2 adjusted so that system is in carbon flux equilibrium.   4) Surface.tar Contains land fraction and surface geopotential fields for the modern SEAI (Landfrac.nc) and no SEAI (Landfrac_noSEAI.nc) simulations References Hurrell, J.W., Holland, M.M., Gent, P.R., Ghan, S., Kay, J.E., Kushner, P.J., Lamarque, J.F., Large, W.G., Lawrence, D., Lindsay, K. and Lipscomb, W.H., 2013. The community earth system model: a framework for collaborative research. Bulletin of the American Meteorological Society, 94(9), pp.1339-1360. Park, Y., Maffre, P., Goddéris, Y., Macdonald, F.A., Anttila, E.S. and Swanson-Hysell, N.L., 2020. Emergence of the Southeast Asian islands as a driver for Neogene cooling. Proceedings of the National Academy of Sciences, 117(41), pp.25319-25326.  more » « less
Award ID(s):
1925990
NSF-PAR ID:
10431447
Author(s) / Creator(s):
;
Publisher / Repository:
Dryad
Date Published:
Edition / Version:
5
Subject(s) / Keyword(s):
FOS: Earth and related environmental sciences
Format(s):
Medium: X Size: 22163909902 bytes
Size(s):
22163909902 bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The geography of the Southeast Asian Islands (SEAI) has changed over the last 15 million years, as a result of tectonic processes contributing to both increased land area and high topography. The presence of the additional land area has been postulated to enhance convective rainfall, facilitating both increased silicate weathering and the development of the modern‐day Walker circulation. Using an Earth System Model in conjunction with a climate‐silicate weathering model, we argue instead for a significant role of SEAItopographyfor both effects. SEAI topography increases orographic rainfall over land, through intercepting moist Asian‐Australian monsoon winds and enhancing land‐sea breezes. Large‐scale atmospheric uplift over the SEAI region increases by ∼14% as a consequence of increased rainfall over the SEAI and enhancement through dynamical ocean‐atmosphere feedback. The atmospheric zonal overturning circulation over the Indo‐Pacific increases modestly arising from dynamical ocean‐atmosphere feedback, more strongly over the tropical Indian Ocean. On the other hand, the effect of the SEAI topography on global silicate weathering is substantial, resulting in a ∼109 ppm reduction in equilibriumpCO2and decrease in global mean temperature by ∼1.7ºC. The chemical weathering increase comes from both enhanced physical erosion rates and increased rainfall due to the presence of SEAI topography. The lowering ofpCO2by SEAI topography also enhances the Indo‐Pacific atmospheric zonal overturning circulation. Our results support a significant role for the progressive emergence of SEAI topography in global cooling over the last several million years.

     
    more » « less
  2. This archive contains COAWST model input, grids and initial conditions, and output used to produce the results in a submitted manuscript. The files are:

    model_input.zip: input files for simulations presented in this paper
      ocean_rip_current.in: ROMS ocean model input file
      swan_rip_current.in: SWAN wave model input file (example with Hs=1m)
      coupling_rip_current.in: model coupling file
      rip_current.h: model header file
      
    model_grids_forcing.zip: bathymetry and initial condition files
         hbeach_grid_isbathy_2m.nc: ROMS bathymetry input file
         hbeach_grid_isbathy_2m.bot: SWAN bathymetry input file
         hbeach_grid_isbathy_2m.grd: SWAN grid input file
         hbeach_init_isbathy_14_18_17.nc: Initial temperature, cool surf zone dT=-1C case
         hbeach_init_isbathy_14_18_19.nc: Initial temperature, warm surf zone dT=+1C case
         hbeach_init_isbathy_14_18_16.nc: Initial temperature, cool surf zone dT=-2C case
         hbeach_init_isbathy_14_18_20.nc: Initial temperature, warm surf zone dT=+2C case
         hbeach_init_isbathy_14_18_17p5.nc: Initial temperature, cool surf zone dT=-0.5C case
         hbeach_init_isbathy_14_18_18p5.nc: Initial temperature, warm surf zone dT=+0.5C case

    model_output files: model output used to produce the figures
         netcdf files, zipped
         variables included:
              x_rho (cross-shore coordinate, m)
              y_rho (alongshore coordinate, m)
              z_rho (vertical coordinate, m)
              ocean_time (time since initialization, s, output every 5 mins)
              h (bathymetry, m)
              temp (temperature, Celsius)
              dye_02 (surfzone-released dye)
              Hwave (wave height, m)
              Dissip_break (wave dissipation W/m2) 
              ubar (cross-shore depth-average velocity, m/s, interpolated to rho-points)
         Case_141817.nc: cool surf zone dT=-1C Hs=1m
         Case_141819.nc: warm surf zone dT=+1C Hs=1m
         Case_141816.nc: cool surf zone dT=-2C Hs=1m
         Case_141820.nc: warm surf zone dT=-2C Hs=1m
         Case_141817p5.nc: cool surf zone dT=-0.5C Hs=1m
         Case_141818p5.nc: warm surf zone dT=+0.5C Hs=1m
         Case_141817_Hp5.nc: cool surf zone dT=-1C Hs=0.5m
         Case_141819_Hp5.nc: warm surf zone dT=+1C Hs=0.5m
         Case_141817_Hp75.nc: cool surf zone dT=-1C Hs=0.75m
         Case_141819_Hp75.nc: warm surf zone dT=+1C Hs=0.75m

    COAWST is an open source code and can be download at https://coawstmodel-trac.sourcerepo.com/coawstmodel_COAWST/. Descriptions of the input and output files can be found in the manual distributed with the model code and in the glossary at the end of the ocean.in file.

    Corresponding author: Melissa Moulton, mmoulton@uw.edu

     
    more » « less
  3. Contains the model output and topography files necessary to reproduce the results of "Linearity of the climate system response to raising and lowering West Antarctic and coastal Antarctic topography" by Andrew G. Pauling, Cecilia M. Bitz and Eric J. Steig. Published in Journal of Climate, https://doi.org/10.1175/JCLI-D-22-0416.1.

    Please download and extract the data from each of the tar.gz.files. A description of the directories, run names, and use of the topography files is given in the file readme.txt within the dataset.

     
    more » « less
  4. This dataset contains output from a prescribed model experiment conducted to investigate the impact of snow cover loss over North America on summer atmospheric circulation. We utilized the National Center for Atmospheric Research’s Community Earth System Model version 2.2 to complete a 10-year control simulation. We then modified the land-surface restart files for May 1st of each year of the control period by reducing the snow cover over North America to zero. Using these modified files, we then completed a reduced snow simulation by rerunning three-month simulations from May through July for each of the ten years. This dataset contains both the 10-year control simulation as well as the May–July “no-snow” simulations for each year. More details about the experimental setup and example output can be found in the following publication: Preece, J.R., Mote, T.L., Cohen, J. et al. Summer atmospheric circulation over Greenland in response to Arctic amplification and diminished spring snow cover. Nat Commun 14, 3759 (2023). https://doi.org/10.1038/s41467-023-39466-6 
    more » « less
  5. Abstract The geologic carbon cycle plays a fundamental role in controlling Earth's climate and habitability. For billions of years, stabilizing feedbacks inherent in the cycle have maintained a surface environment that could sustain life. Carbonation/decarbonation reactions are the primary mechanisms for transferring carbon between the solid Earth and the ocean–atmosphere system. These processes can be broadly represented by the reaction: CaSiO3 (wollastonite) + CO2 (gas) ↔ CaCO3 (calcite) + SiO2 (quartz). This class of reactions is therefore critical to Earth's past and future habitability. Here, we summarize their significance as part of the Deep Carbon Obsevatory's “Earth in Five Reactions” project. In the forward direction, carbonation reactions like the one above describe silicate weathering and carbonate formation on Earth's surface. Recent work aims to resolve the balance between silicate weathering in terrestrial and marine settings both in the modern Earth system and through Earth's history. Rocks may also undergo carbonation reactions at high temperatures in the ultramafic mantle wedge of a subduction zone or during retrograde regional metamorphism. In the reverse direction, the reaction above represents various prograde metamorphic decarbonation processes that can occur in continental collisions, rift zones, subduction zones, and in aureoles around magmatic systems. We summarize the fluxes and uncertainties of major carbonation/decarbonation reactions and review the key feedback mechanisms that are likely to have stabilized atmospheric CO2 levels. Future work on planetary habitability and Earth's past and future climate will rely on an enhanced understanding of the long-term carbon cycle. 
    more » « less