skip to main content


Title: Impacts of a Cascadia Subduction Zone Earthquake on Water Levels and Wetlands of the Lower Columbia River and Estuary
Abstract

Subsidence after a subduction zone earthquake can cause major changes in estuarine bathymetry. Here, we quantify the impacts of earthquake‐induced subsidence on hydrodynamics and habitat distributions in a major system, the lower Columbia River Estuary, using a hydrodynamic and habitat model. Model results indicate that coseismic subsidence increases tidal range, with the smallest changes at the coast and a maximum increase of ∼10% in a region of topographic convergence. All modeled scenarios reduce intertidal habitat by 24%–25% and shifts ∼93% of estuarine wetlands to lower‐elevation habitat bands. Incorporating dynamic effects of tidal change from subsidence yields higher estimates of remaining habitat by multiples of 0–3.7, dependent on the habitat type. The persistent tidal change and chronic habitat disturbance after an earthquake poses strong challenges for estuarine management and wetland restoration planning, particularly when coupled with future sea‐level rise effects.

 
more » « less
NSF-PAR ID:
10431566
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
14
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Since the late nineteenth century, channel depths have more than doubled in parts of New York Harbor and the tidal Hudson River, wetlands have been reclaimed and navigational channels widened, and river flow has been regulated. To quantify the effects of these modifications, observations and numerical simulations using historical and modern bathymetry are used to analyze changes in the barotropic dynamics. Model results and water level records for Albany (1868 to present) and New York Harbor (1844 to present) recovered from archives show that the tidal amplitude has more than doubled near the head of tides, whereas increases in the lower estuary have been slight (<10%). Channel deepening has reduced the effective drag in the upper tidal river, shifting the system from hyposynchronous (tide decaying landward) to hypersynchronous (tide amplifying). Similarly, modeling shows that coastal storm effects propagate farther landward, with a 20% increase in amplitude for a major event. In contrast, the decrease in friction with channel deepening has lowered the tidally averaged water level during discharge events, more than compensating for increased surge amplitude. Combined with river regulation that reduced peak discharges, the overall risk of extreme water levels in the upper tidal river decreased after channel construction, reducing the water level for the 10‐year recurrence interval event by almost 3 m. Mean water level decreased sharply with channel modifications around 1930, and subsequent decadal variability has depended both on river discharge and sea level rise. Channel construction has only slightly altered tidal and storm surge amplitudes in the lower estuary.

     
    more » « less
  2. Abstract

    Over heterogeneous landscapes, organisms and energy move across ecological boundaries and this can have profound effects on overall ecosystem functioning. Both abiotic and biotic factors along habitat boundaries may facilitate or impede key species interactions that drive these energy flows—especially along the land–sea interface. We synthesized the literature detailing estuarine fish diets and habitat characteristics of salt marshes from U.S. East and Gulf coasts to determine patterns and drivers of cross‐boundary trophic transfers at the land–sea interface. Notably, marsh‐platform species (i.e., killifishes, fiddler crabs) appear virtually absent in the diets of transient estuarine fishes in the Gulf of Mexico, while along the South Atlantic and Mid‐Atlantic Bights, marsh‐platform species appear regularly in the diets of many transient estuarine fishes. Tidal amplitude varied across these three biogeographic regions and likely regulates the availability of marsh‐platform species to transient estuarine fishes via both access to the marsh surface for marine predators and emergence of marsh‐resident prey into the adjacent estuary (i.e., higher tidal amplitude increases predator–prey encounter rates). Surprisingly, marsh shoot density was positively correlated with the presence of marsh‐platform species in the diet, but this pattern appears to be mediated by increased tidal amplitude, suggesting the mode and periodicity of abiotic cycles drive diet structure of transient estuarine fishes more so than local habitat structural complexity. Subsequently, these processes likely influence the degree to which “trophic relay” moves energy from the marsh toward the open estuary. Understanding the dynamics that determine energy flows, spatial subsidies, and ultimately, ecosystem‐level productivity, is essential for implementation of holistic ecosystem‐based approaches to conserve and manage complex landscape mosaics.

     
    more » « less
  3. Abstract

    Landscapes of fear describe a spatial representation of an animal's perceived risk of predation and the associated foraging costs, while energy landscapes describe the spatial representation of their energetic cost of moving and foraging. Fear landscapes are often dynamic and change based on predator presence and behaviour, and variation in abiotic conditions that modify risk. Energy landscapes are also dynamic and can change across diel, seasonal, and climatic timescales based on variability in temperature, snowfall, wind/current speeds, etc.

    Recently, it was suggested that fear and energy landscapes should be integrated. In this paradigm, the interaction between landscapes relates to prey being forced to use areas of the energy landscape they would avoid if risk were not a factor. However, dynamic energy landscapes experienced by predators must also be considered since they can affect their ability to forage, irrespective of variation in prey behaviour. We propose an additional component to the fear and dynamic energy landscape paradigm that integrates landscapes of both prey and predators, where predator foraging behaviour is modulated by changes in their energyscape.

    Specifically, we integrate the predator's energy landscape into foraging theory that predicts prey patch‐leaving decisions under the threat of predation. We predict that as a predator's energetic cost of foraging increases in a habitat, then the prey's foraging cost of predation and patch quitting harvest rate, will decrease. Prey may also decrease their vigilance in response to increased energetic foraging costs for predators, which will lower giving‐up densities of prey.

    We then provide examples in terrestrial, aerial, and marine ecosystems where we might expect to see these effects. These include birds and sharks which use updrafts that vary based on wind and current speeds, tidal state, or temperature, and terrestrial predators (e.g. wolves) whose landscapes vary seasonally with snow depth or ice cover which may influence their foraging success and even diet selection.

    A predator perspective is critical to considering the combination of these landscapes and their ecological consequences. Dynamic predator energy landscapes could add an additional spatiotemporal component to risk effects, which may cascade through food webs.

    Read the freePlain Language Summaryfor this article on the Journal blog.

     
    more » « less
  4. Abstract

    Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.

     
    more » « less
  5. null (Ed.)
    Abstract Climate change is altering naturally fluctuating environmental conditions in coastal and estuarine ecosystems across the globe. Departures from long-term averages and ranges of environmental variables are increasingly being observed as directional changes [e.g., rising sea levels, sea surface temperatures (SST)] and less predictable periodic cycles (e.g., Atlantic or Pacific decadal oscillations) and extremes (e.g., coastal flooding, marine heatwaves). Quantifying the short- and long-term impacts of climate change on tidal marsh seascape structure and function for nekton is a critical step toward fisheries conservation and management. The multiple stressor framework provides a promising approach for advancing integrative, cross-disciplinary research on tidal marshes and food web dynamics. It can be used to quantify climate change effects on and interactions between coastal oceans (e.g., SST, ocean currents, waves) and watersheds (e.g., precipitation, river flows), tidal marsh geomorphology (e.g., vegetation structure, elevation capital, sedimentation), and estuarine and coastal nekton (e.g., species distributions, life history adaptations, predator-prey dynamics). However, disentangling the cumulative impacts of multiple interacting stressors on tidal marshes, whether the effects are additive, synergistic, or antagonistic, and the time scales at which they occur, poses a significant research challenge. This perspective highlights the key physical and ecological processes affecting tidal marshes, with an emphasis on the trophic linkages between marsh production and estuarine and coastal nekton, recommended for consideration in future climate change studies. Such studies are urgently needed to understand climate change effects on tidal marshes now and into the future. 
    more » « less