Background: Variants within factor VIII (F8) are associated with sex-linked hemophilia A and thrombosis, with gene therapy approaches being available for pathogenic variants. Many variants within F8 remain variants of uncertain significance (VUS) or are under-explored as to their connections to phenotypic outcomes. Methods: We assessed data on F8 expression while screening the UniProt, ClinVar, Geno2MP, and gnomAD databases for F8 missense variants; these collectively represent the sequencing of more than a million individuals. Results: For the two F8 isoforms coding for different protein lengths (2351 and 216 amino acids), we observed noncoding variants influencing expression which are also associated with thrombosis risk, with uncertainty as to differences in females and males. Variant analysis identified a severe stratification of potential annotation issues for missense variants in subjects of non-European ancestry, suggesting a need for further defining the genetics of diverse populations. Additionally, few heterozygous female carriers of known pathogenic variants have sufficiently confident phenotyping data, leaving researchers unable to determine subtle, less defined phenotypes. Using structure movement correlations to known pathogenic variants for the VUS, we determined seven clusters of likely pathogenic variants based on screening work. Conclusions: This work highlights the need to define missense variants, especially those for VUS and from subjects of non-European ancestry, as well as the roles of these variants in women’s physiology. 
                        more » 
                        « less   
                    
                            
                            ClinVar and HGMD genomic variant classification accuracy has improved over time, as measured by implied disease burden
                        
                    
    
            Abstract BackgroundCurated databases of genetic variants assist clinicians and researchers in interpreting genetic variation. Yet, these databases contain some misclassified variants. It is unclear whether variant misclassification is abating as these databases rapidly grow and implement new guidelines. MethodsUsing archives of ClinVar and HGMD, we investigated how variant misclassification has changed over 6 years, across different ancestry groups. We considered inborn errors of metabolism (IEMs) screened in newborns as a model system because these disorders are often highly penetrant with neonatal phenotypes. We used samples from the 1000 Genomes Project (1KGP) to identify individuals with genotypes that were classified by the databases as pathogenic. Due to the rarity of IEMs, nearly all such classified pathogenic genotypes indicate likely variant misclassification in ClinVar or HGMD. ResultsWhile the false-positive rates of both ClinVar and HGMD have improved over time, HGMD variants currently imply two orders of magnitude more affected individuals in 1KGP than ClinVar variants. We observed that African ancestry individuals have a significantly increased chance of being incorrectly indicated to be affected by a screened IEM when HGMD variants are used. However, this bias affecting genomes of African ancestry was no longer significant once common variants were removed in accordance with recent variant classification guidelines. We discovered that ClinVar variants classified as Pathogenic or Likely Pathogenic are reclassified sixfold more often than DM or DM? variants in HGMD, which has likely resulted in ClinVar’s lower false-positive rate. ConclusionsConsidering misclassified variants that have since been reclassified reveals our increasing understanding of rare genetic variation. We found that variant classification guidelines and allele frequency databases comprising genetically diverse samples are important factors in reclassification. We also discovered that ClinVar variants common in European and South Asian individuals were more likely to be reclassified to a lower confidence category, perhaps due to an increased chance of these variants being classified by multiple submitters. We discuss features for variant classification databases that would support their continued improvement. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2109912
- PAR ID:
- 10431579
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Genome Medicine
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1756-994X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control data sets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project (1KGP) Oxford Nanopore Technologies Sequencing Consortium aims to generate LRS data from at least 800 of the 1KGP samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37× and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.more » « less
- 
            Abstract Rationale: Genetic variation has a substantial contribution to chronic obstructive pulmonary disease (COPD) and lung function measurements. Heritability estimates using genome-wide genotyping data can be biased if analyses do not appropriately account for the nonuniform distribution of genetic effects across the allele frequency and linkage disequilibrium (LD) spectrum. In addition, the contribution of rare variants has been unclear. Objectives: We sought to assess the heritability of COPD and lung function using whole-genome sequence data from the Trans-Omics for Precision Medicine program. Methods: Using the genome-based restricted maximum likelihood method, we partitioned the genome into bins based on minor allele frequency and LD scores and estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio in 11 051 European ancestry and 5853 African-American participants. Measurements and Main Results: In European ancestry participants, the estimated heritability of COPD, FEV1% predicted and FEV1/FVC ratio were 35.5%, 55.6% and 32.5%, of which 18.8%, 19.7%, 17.8% were from common variants, and 16.6%, 35.8%, and 14.6% were from rare variants. These estimates had wide confidence intervals, with common variants and some sets of rare variants showing a statistically significant contribution (P-value < 0.05). In African-Americans, common variant heritability was similar to European ancestry participants, but lower sample size precluded calculation of rare variant heritability. Conclusions: Our study provides updated and unbiased estimates of heritability for COPD and lung function, and suggests an important contribution of rare variants. Larger studies of more diverse ancestry will improve accuracy of these estimates.more » « less
- 
            Abstract SummaryAdmixture is a fundamental process that has shaped levels and patterns of genetic variation in human populations. RFMIX version 2 (RFMIX2) utilizes a robust modeling approach to identify the genetic ancestries in admixed populations. However, this software does not have a built-in method to visually summarize the results of analyses. Here, we introduce the AncestryGrapher toolkit, which converts the numerical output of RFMIX2 into graphical representations of global and local ancestry (i.e. the per-individual ancestry components and the genetic ancestry along chromosomes, respectively). ResultsTo demonstrate the utility of our methods, we applied the AncestryGrapher toolkit to visualize the global and local ancestry of individuals in the North African Mozabite Berber population from the Human Genome Diversity Panel. Our results showed that the Mozabite Berbers derived their ancestry from the Middle East, Europe, and sub-Saharan Africa (global ancestry). We also found that the population origin of ancestry varied considerably along chromosomes (local ancestry). For example, we observed variance in local ancestry in the genomic region on Chromosome 2 containing the regulatory sequence in the MCM6 gene associated with lactase persistence, a human trait tied to the cultural development of adult milk consumption. Overall, the AncestryGrapher toolkit facilitates the exploration, interpretation, and reporting of ancestry patterns in human populations. Availability and implementationThe AncestryGrapher toolkit is free and open source on https://github.com/alisi1989/RFmix2-Pipeline-to-plot.more » « less
- 
            Abstract Over three percent of people carry a dominant pathogenic variant, yet only a fraction of carriers develop disease. Disease phenotypes from carriers of variants in the same gene range from mild to severe. Here, we investigate underlying mechanisms for this heterogeneity: variable variant effect sizes, carrier polygenic backgrounds, and modulation of carrier effect by genetic background (marginal epistasis). We leveraged exomes and clinical phenotypes from the UK Biobank and the Mt. Sinai BioMeBiobank to identify carriers of pathogenic variants affecting cardiometabolic traits. We employed recently developed methods to study these cohorts, observing strong statistical support and clinical translational potential for all three mechanisms of variable carrier penetrance and disease severity. For example, scores from our recent model of variant pathogenicity were tightly correlated with phenotype amongst clinical variant carriers, they predicted effects of variants of unknown significance, and they distinguished gain- from loss-of-function variants. We also found that polygenic scores modify phenotypes amongst pathogenic carriers and that genetic background additionally alters the effects of pathogenic variants through interactions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
