skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An experimental comparison of stand management approaches to sudden oak death: prevention vs restoration
Many coastal forests stretching from central California to southwest Oregon are threatened or have been impacted by the invasive forest pathogen Phytophthora ramorum, cause of sudden oak death. We analyzed a set of stand-level forest treatments aimed at preventing or mitigating disease impacts on stand composition, biomass, and fuels, using a before-after-control-intervention experiment with a revaluation after five years. We compared the effects of restorative management in invaded stands to preventative treatments in uninvaded forests. The restorative treatments contrasted two approaches to mastication, hand-crew thinning, and thinning with pile burning with untreated controls (N=30) while the preventative treatments were limited to hand-crew thinning (N=10). Half of the restoration treatments had basal sprouts removed two- and four-years after treatment. All treatments significantly reduced stand density and increased average tree size without significantly decreasing total basal area both immediately and five years after treatments. Preventative treatments also significantly increased dominance of timber species not susceptible to P. ramorum. Follow-up basal sprout removal in the restoration experiment appears to maintain treatment benefits to average tree size and may be associated with small decreases in stand density five years after initial treatment. Our study demonstrates that for at least five years, a range of common stand management practices can improve forests threatened or impacted by sudden oak death.  more » « less
Award ID(s):
1753965
PAR ID:
10431686
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Canadian Journal of Forest Research
ISSN:
0045-5067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wildfire activity is increasing in boreal forests as climate warms and dries, increasing risks to rural and urban communities. In black spruce forests of Interior Alaska, fuel reduction treatments are used to create a defensible space for fire suppression and slow fire spread. These treatments introduce novel disturbance characteristics, making longer-term outcomes on ecosystem structure and wildfire risk reduction uncertain. We remeasured a network of sites where fuels were reduced through hand thinning or mechanical shearblading in Interior Alaska to assess how successional trajectories of tree dominance, understory composition, and permafrost change over ∼ 20 years after treatment. We also assessed if these fuel reduction treatments reduce modeled surface rate of fire spread (ROS), flame length, and fireline intensity relative to an untreated black spruce stand, and if surface fire behavior changes over time. In thinned areas, soil organic layer (SOL) disturbance promoted tree seedling recruitment but did not change over time. In shearbladed sites, by contrast, both conifer and broad-leaved deciduous seedling density increased over time and deciduous seedlings were 20 times more abundant than spruce. Thaw depth increased over time in both treatments and was greatest in shearbladed sites with a thin SOL. Understory composition was not altered by thinning but in shearbladed treatments shifted from forbs and horsetail to tall deciduous shrubs and grasses over time. Modeled surface fire behavior was constant in shearbladed sites. This finding is inconsistent with expert opinion, highlighting the need for additional fuels-specific data to capture the changing vegetation structure. Treatment effectiveness at reducing modeled surface ROS, flame length, and fireline intensity depended on the fuel model used for an untreated black spruce stand, pointing to uncertainties about the efficacy of these treatments at mitigating surface fire behavior. Overall, we show that fuel reduction treatments can promote low flammability, deciduous tree dominated successional trajectories, and that shearblading has strong effects on understory composition and permafrost degradation that persist for nearly two decades after disturbance. Such factors need to be considered to enhance the design, management, and predictions of fire behavior in these treatments. 
    more » « less
  2. null (Ed.)
    Drought, coupled with rising temperatures, is an emerging threat to many forest types across the globe. At least to a degree, we expect management actions that reduce competition (e.g., thinning, prescribed fire, or both) to improve growth of residual trees during drought. The influences of management actions and drought on individual tree growth may be measured with high precision using tree-rings. Here, we summarize tree-ring-based assessments of the effectiveness of thinning and prescribed fire as drought adaptation tools, with special consideration for how these findings might apply to dry coniferous forests in the southwestern United States. The existing literature suggests that thinning treatments generally improve individual tree growth responses to drought, though the literature specific to southwestern coniferous forests is sparse. Assessments from studies beyond the southwestern United States indicate treatment effectiveness varies by thinning intensity, timing of the drought relative to treatments, and individualistic species responses. Several large-scale studies appear to conflict on specifics of how site aridity influences sensitivity to drought following thinning. Prescribed fire effects in the absence of thinning has received much less attention in terms of subsequent drought response. There are limitations for using tree-ring data to estimate drought responses (e.g., difficulties scaling up observations to stand- and landscape-levels). However, tree-rings describe an important dimension of drought effects for individual trees, and when coupled with additional information, such as stable isotopes, aid our understanding of key physiological mechanisms that underlie forest drought response. 
    more » « less
  3. Choosing effective methods to restore habitat for the diverse faunal assemblages of tropical forests is hampered by lack of long-term data comparing multiple restoration treatments. We conducted area counts of bird assemblages over 12 years (~5–17 years since restoration) in a blocked experiment with two active planted treatments (tree plantations and applied nucleation) and a passive restoration treatment (natural regeneration) replicated at 11 sites in Costa Rica. We also surveyed six pastures and five remnant forest sites to assess recovery of avian species richness, composition, forest specialists, and range-restricted species in restoration plots relative to degraded and reference systems. Restoration treatments showed increased resemblance of avian assemblages to remnant forest over time. Applied nucleation proved equally effective as plantation, despite a reduced planted area, whereas natural regeneration recovered more slowly. Assemblage-level trends in avian species richness and compositional similarity to reference forest are underpinned by reductions in use by pasture birds and by gradual increases in richness of forest-affiliated species. Because forest-affiliated species tend to have narrower distributions than the open-country species they replace, forest restoration can reduce biotic homogenization at the local scale. Restoration practitioners should consider applied nucleation as an alternative to standard plantations if seeking rapid recovery of bird assemblages. However, the ecological return on investment from natural regeneration increases over a couple of decades. Managers should monitor trends in forest-affiliated and rangerestricted species to track the recovery of the full avian assemblages, since coarse metrics like species richness and overall compositional similarity may plateau relatively quickly 
    more » « less
  4. Abstract The Sierra Nevada has experienced unprecedented wildfires and reduced snowmelt runoff in recent decades, due partially to anthropogenic climate change and over a century of fire suppression. To address these challenges, public land agencies are planning forest restoration treatments, which have the potential to both increase water availability and reduce the likelihood of uncontrollable wildfires. However, the impact of forest restoration on snowpack is site specific and not well understood across gradients of climate and topography. To improve our understanding of how forest restoration might impact snowpack across diverse conditions in the central Sierra Nevada, we run the high‐resolution (1 m) energy and mass balance Snow Physics and Lidar Mapping (SnowPALM) model across five 23–75 km2subdomains in the region where forest thinning is planned or recently completed. We conduct two virtual thinning experiments by removing all trees shorter than 10 or 20 m tall and rerunning SnowPALM to calculate the change in meltwater input. Our results indicate heterogeneous responses to thinning due to differences in climate and wind across our five central Sierra Nevada subdomains. We also predict the largest increases in snow retention when thinning forests with tall (7–20 m) and dense (40–70% canopy cover) trees, highlighting the importance of pre‐thinning vegetation structure. We develop a decision support tool using a random forests model to determine which regions would most benefit from thinning. In many locations, we expect major forest restoration to increase snow accumulation, while other areas with short and sparse canopies, as well as sunny and windy climates, are more likely to see decreased snowpack following thinning. Our decision support tool provides stand‐scale (30 m) information to land managers across the central Sierra Nevada region to best take advantage of climate and existing forest structure to obtain the greatest snowpack benefits from forest restoration. 
    more » « less
  5. We investigated radial growth of post oak (Quercus stellata Wangenh.) growing in a range of stand structures (forest to savanna) created in 1984 by different harvesting, thinning, and prescribed fire intervals. We related ring width index (RWI) to monthly and seasonal climate variables and time since fire to assess impacts of climate variability and interactions with management on radial growth. The RWI of all treatments was positively correlated to minimum daily temperature the previous September and precipitation late spring and early summer the current year, and negatively correlated to maximum daily temperatures and drought index late spring – early summer. June weather was most strongly correlated in four of five treatments. While stand structure affected absolute diameter growth, the RWI of savanna and forest stands responded similarly to climate variability, and low intensity prescribed fire did not influence RWI. On average, a 100 mm reduction in June precipitation decreased RWI by 7%, a 1 °C increase in previous-year September daily minimum temperature increased RWI by 3.5%, and a 1 °C increase in June maximum daily temperature decreased RWI by 3.7%. Therefore, negative effects of drought and warmer spring and summer temperatures may be reduced by a longer growing season under warmer climate scenarios. However, management did not appear to influence RWI. 
    more » « less