skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Stronger Lower Bound on Parametric Minimum Spanning Trees
Abstract We prove that, for an undirected graph with n vertices and m edges, each labeled with a linear function of a parameter $$\lambda $$ λ , the number of different minimum spanning trees obtained as the parameter varies can be $$\Omega (m\log n)$$ Ω ( m log n ) .  more » « less
Award ID(s):
2212129
PAR ID:
10431693
Author(s) / Creator(s):
Date Published:
Journal Name:
Algorithmica
Volume:
85
Issue:
6
ISSN:
0178-4617
Page Range / eLocation ID:
1738 to 1753
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Censor-Hillel, Keren; Grandoni, Fabrizio; Ouaknine, Joel; Puppis, Gabriele (Ed.)
    We study the problem of indexing a text T[1..n] to support pattern matching with wildcards. The input of a query is a pattern P[1..m] containing h ∈ [0, k] wildcard (a.k.a. don't care) characters and the output is the set of occurrences of P in T (i.e., starting positions of substrings of T that matches P), where k = o(log n) is fixed at index construction. A classic solution by Cole et al. [STOC 2004] provides an index with space complexity O(n ⋅ (clog n)^k/k!)) and query time O(m+2^h log log n+occ), where c > 1 is a constant, and occ denotes the number of occurrences of P in T. We introduce a new data structure that significantly reduces space usage for highly repetitive texts while maintaining efficient query processing. Its space (in words) and query time are as follows: O(δ log (n/δ)⋅ c^k (1+(log^k (δ log n))/k!)) and O((m+2^h +occ)log n)) The parameter δ, known as substring complexity, is a recently introduced measure of repetitiveness that serves as a unifying and lower-bounding metric for several popular measures, including the number of phrases in the LZ77 factorization (denoted by z) and the number of runs in the Burrows-Wheeler Transform (denoted by r). Moreover, O(δ log (n/δ)) represents the optimal space required to encode the data in terms of n and δ, helping us see how close our space is to the minimum required. In another trade-off, we match the query time of Cole et al.’s index using O(n+δ log (n/δ) ⋅ (clogδ)^{k+ε}/k!) space, where ε > 0 is an arbitrarily small constant. We also demonstrate how these techniques can be applied to a more general indexing problem, where the query pattern includes k-gaps (a gap can be interpreted as a contiguous sequence of wildcard characters). 
    more » « less
  2. null (Ed.)
    We consider the classical Minimum Balanced Cut problem: given a graph $$G$$, compute a partition of its vertices into two subsets of roughly equal volume, while minimizing the number of edges connecting the subsets. We present the first {\em deterministic, almost-linear time} approximation algorithm for this problem. Specifically, our algorithm, given an $$n$$-vertex $$m$$-edge graph $$G$$ and any parameter $$1\leq r\leq O(\log n)$$, computes a $$(\log m)^{r^2}$$-approximation for Minimum Balanced Cut on $$G$$, in time $$O\left ( m^{1+O(1/r)+o(1)}\cdot (\log m)^{O(r^2)}\right )$$. In particular, we obtain a $$(\log m)^{1/\epsilon}$$-approximation in time $$m^{1+O(1/\sqrt{\epsilon})}$$ for any constant $$\epsilon$$, and a $$(\log m)^{f(m)}$$-approximation in time $$m^{1+o(1)}$$, for any slowly growing function $$m$$. We obtain deterministic algorithms with similar guarantees for the Sparsest Cut and the Lowest-Conductance Cut problems. Our algorithm for the Minimum Balanced Cut problem in fact provides a stronger guarantee: it either returns a balanced cut whose value is close to a given target value, or it certifies that such a cut does not exist by exhibiting a large subgraph of $$G$$ that has high conductance. We use this algorithm to obtain deterministic algorithms for dynamic connectivity and minimum spanning forest, whose worst-case update time on an $$n$$-vertex graph is $$n^{o(1)}$$, thus resolving a major open problem in the area of dynamic graph algorithms. Our work also implies deterministic algorithms for a host of additional problems, whose time complexities match, up to subpolynomial in $$n$$ factors, those of known randomized algorithms. The implications include almost-linear time deterministic algorithms for solving Laplacian systems and for approximating maximum flows in undirected graphs. 
    more » « less
  3. We present new algorithms for computing many faces in arrangements of lines and segments. Given a set $$S$$ of $$n$$ lines (resp., segments) and a set $$P$$ of $$m$$ points in the plane, the problem is to compute the faces of the arrangements of $$S$$ that contain at least one point of $$P$$. For the line case, we give a deterministic algorithm of $$O(m^{2/3}n^{2/3}\log^{2/3} (n/\sqrt{m})+(m+n)\log n)$$ time. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.22}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log^{1/3}n$$ in certain cases (e.g., when $$m=\Theta(n)$$). For the segment case, we present a deterministic algorithm of $$O(n^{2/3}m^{2/3}\log n+\tau(n\alpha^2(n)+n\log m+m)\log n)$$ time, where $$\tau=\min\{\log m,\log (n/\sqrt{m})\}$$ and $$\alpha(n)$$ is the inverse Ackermann function. This improves the previously best deterministic algorithm [Agarwal, 1990] by a factor of $$\log^{2.11}n$$ and improves the previously best randomized algorithm [Agarwal, Matoušek, and Schwarzkopf, 1998] by a factor of $$\log n$$ in certain cases (e.g., when $$m=\Theta(n)$$). We also give a randomized algorithm of $$O(m^{2/3}K^{1/3}\log n+\tau(n\alpha(n)+n\log m+m)\log n\log K)$$ expected time, where $$K$$ is the number of intersections of all segments of $$S$$. In addition, we consider the query version of the problem, that is, preprocess $$S$$ to compute the face of the arrangement of $$S$$ that contains any given query point. We present new results that improve the previous work for both the line and the segment cases. In particulary, for the line case, we build a data structure of $$O(n\log n)$$ space in $$O(n\log n)$$ randomized time, so that the face containing the query point can be obtained in $$O(\sqrt{n\log n})$$ time with high probability (more specifically, the query returns a binary search tree representing the face so that standard binary-search-based queries on the face can be handled in $$O(\log n)$$ time each and the face itself can be output explicitly in time linear in its size). 
    more » « less
  4. We consider the problem of implementing randomized wait-free consensus from max registers under the assumption of an oblivious adversary. We show that max registers solve m-valued consensus for arbitrary m in expected O(log^* n) steps per process, beating the Omega(log m/log log m) lower bound for ordinary registers when m is large and the best previously known O(log log n) upper bound when m is small. A simple max-register implementation based on double-collect snapshots translates this result into an O(n log n) expected step implementation of m-valued consensus from n single-writer registers, improving on the best previously-known bound of O(n log^2 n) for single-writer registers. 
    more » « less
  5. Nissim, K.; Waters, B. (Ed.)
    Recent new constructions of rate-1 OT [Döttling, Garg, Ishai, Malavolta, Mour, and Ostrovsky, CRYPTO 2019] have brought this primitive under the spotlight and the techniques have led to new feasibility results for private-information retrieval, and homomorphic encryption for branching programs. The receiver communication of this construction consists of a quadratic (in the sender's input size) number of group elements for a single instance of rate-1 OT. Recently [Garg, Hajiabadi, Ostrovsky, TCC 2020] improved the receiver communication to a linear number of group elements for a single string-OT. However, most applications of rate-1 OT require executing it multiple times, resulting in large communication costs for the receiver. In this work, we introduce a new technique for amortizing the cost of multiple rate-1 OTs. Specifically, based on standard pairing assumptions, we obtain a two-message rate-1 OT protocol for which the amortized cost per string-OT is asymptotically reduced to only four group elements. Our results lead to significant communication improvements in PSI and PIR, special cases of SFE for branching programs. - PIR: We obtain a rate-1 PIR scheme with client communication cost of $$O(\lambda\cdot\log N)$$ group elements for security parameter $$\lambda$$ and database size $$N$$. Notably, after a one-time setup (or one PIR instance), any following PIR instance only requires communication cost $$O(\log N)$$ number of group elements. - PSI with unbalanced inputs: We apply our techniques to private set intersection with unbalanced set sizes (where the receiver has a smaller set) and achieve receiver communication of $$O((m+\lambda) \log N)$$ group elements where $m, N$ are the sizes of the receiver and sender sets, respectively. Similarly, after a one-time setup (or one PSI instance), any following PSI instance only requires communication cost $$O(m \cdot \log N)$$ number of group elements. All previous sublinear-communication non-FHE based PSI protocols for the above unbalanced setting were also based on rate-1 OT, but incurred at least $$O(\lambda^2 m \log N)$$ group elements. 
    more » « less