skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Copper( i )-catalyzed tandem synthesis of 4,5-functionalized oxazoles from isocyanoacetate and aldehydes
Oxazoles are among the most important heterocyclic scaffolds in the fields of natural products and medicinal chemistry. Herein is developed a tandem reaction for the synthesis of a diverse array of 4,5-difunctionalized oxazoles utilizing easily-accessible ethyl 2-isocyanoacetate and aldehydes (26 examples, 31–83% yields). This cascade reaction is facilitated by catalytic CuBr and molecular oxygen as the oxidant. The process involves a catalytic cycloaddition oxidative dehydroaromatization mechanism. The broad aldehyde substrate scope, mild reaction conditions, and atom economy make this protocol an attractive alternative to access functionalized oxazoles.  more » « less
Award ID(s):
2154593
PAR ID:
10431725
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
46
Issue:
35
ISSN:
1144-0546
Page Range / eLocation ID:
16840 to 16843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Twelve new azole compounds were synthesized through an ene reaction involving methylidene heterocycles and phenylmaleimide, producing four oxazoles, five thiazoles, and one pyridine derivative, and ethyl glyoxylate for an oxazole and a thiazole compound. The twelve azoles have a stereogenic center in their structure. Hence, a method to separate the enantiomeric pairs, must be provided if any further study of chemical and pharmacological importance of these compounds is to be accomplished. Six chiral stationary phases were assayed: four were based on macrocyclic glycopeptide selectors and two on linear carbohydrates, i.e., derivatized maltodextrin and amylose. The enantiomers of the entire set of new chiral azole compounds were separated using three different mobile phase elution modes: normal phase, polar organic, and reversed phase. The most effective chiral stationary phase was the MaltoShell column, which was able to separate ten of the twelve compounds in one elution mode or another. Structural similarities in the newly synthesized oxazoles provided some insights into possible chiral recognition mechanisms. 
    more » « less
  2. Abstract DMSO, an interesting solvent for copper‐catalyzed living radical polymerization (LRP) mediated by disproportionation, does not exhibit the greatest disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Under suitable conditions, DMSO provides 100% conversion and absence of termination, facilitating the development of complex‐architecture methodologies by living and immortal polymerizations. The mechanism yielding this level of precision is being investigated. Here we compare Cu(0)‐wire‐catalyzed LRP of methyl acrylate mediated by disproportionating ligands tris(2‐dimethylaminoethyl)amine, Me6‐TREN, tris(2‐aminoethyl)amine, TREN, and Me6‐TREN/TREN = 1/1 in presence of eight disproportionating solvents, some more efficient than DMSO in disproportionation. Unexpectedly, we observed that all solvents increased the rate of polymerization when monomer concentration decreased. This reversed trend from that of conventional LRPs demonstrates catalytic effect for disproportionating solvents. Above a certain concentration, the classic concentration‐rate dependence was observed. The external order of reaction of the apparent rate constant of propagation,kpappon solvent concentration demonstrated the highest order of reaction for the least disproportionating DMSO. Of all solvents investigated, DMSO has the highest ability to stabilize Cu(0) nanoparticles and therefore, yields the highest activity of Cu(0) nanoparticles rather than their greatest concentration. The implications of the catalytic effect of solvent in this and other reactions were discussed. 
    more » « less
  3. A versatile Rh( i )-catalyzed C6-selective decarbonylative C–H alkenylation of 2-pyridones with readily available, and inexpensive alkenyl carboxylic acids has been developed. This directed dehydrogenative cross-coupling reaction affords 6-alkenylated 2-pyridones that would otherwise be difficult to access using conventional C–H functionalization protocols. The reaction occurs with high efficiency and is tolerant of a broad range of functional groups. A wide scope of alkenyl carboxylic acids, including challenging conjugated polyene carboxylic acids, are amenable to this transformation and no addition of external oxidant is required. Mechanistic studies revealed that (1) Boc 2 O acts as the activator for the in situ transformation of the carboxylic acids into anhydrides before oxidative addition by the Rh catalyst, (2) a decarbonylation step is involved in the catalytic cycle, and (3) the C–H bond cleavage is likely the turnover-limiting step. 
    more » « less
  4. null (Ed.)
    Organohypervalent iodine reagents are widely used for the preparation of various oxazolines, oxazoles, isoxazolines, and isoxazoles. In the formation of these heterocyclic compounds, hypervalent iodine species can serve as the activating reagents for various substrates, as well as the heteroatom donor reagents. In recent research, both chemical and electrochemical approaches toward generation of hypervalent iodine species have been utilized. The in situ generated active species can react with appropriate substrates to give the corresponding heterocyclic products. In this short review, we summarize the hypervalent-iodine­-mediated preparation of oxazolines, oxazoles, isoxazolines, and isoxazoles starting from various substrates. 1 Introduction 2 Synthesis of Oxazolines 3 Synthesis of Oxazoles 4 Synthesis of Isoxazolines 5 Synthesis of Isoxazoles 6 Conclusion 
    more » « less
  5. Abstract As the tools of computational quantum chemistry have continued to mature, larger and more complex molecular systems have become amenable to computational study. However, studies of these complex systems often require the execution of enormous numbers of computations, which can be a tedious and error‐prone process if done manually. We have developed a suite of free, open‐source tools to facilitate the automation of quantum chemistry workflows. These tools are collected under the organization QChASM (Quantum Chemistry Automation and Structure Manipulation) and include functionality for building and manipulating complex molecular structures and performing routine tasks (AaronTools), a toolkit for automating TS optimizations and predictions of the outcomes of selective homogeneous catalytic reactions, and a plug‐in for UCSF ChimeraX that provides a graphical interface for building complex molecular structures and representing output from quantum chemistry computations. These tools are described below, with a focus on the recent Python implementation of AaronTools. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisSoftware > Quantum Chemistry 
    more » « less