skip to main content


This content will become publicly available on December 1, 2024

Title: Deglacial perspectives of future sea level for Singapore
Abstract Low elevation equatorial and tropical coastal regions are highly vulnerable to sea level rise. Here we provide probability perspectives of future sea level for Singapore using regional geological reconstructions and instrumental records since the last glacial maximum ~21.5 thousand years ago. We quantify magnitudes and rates of sea-level change showing deglacial sea level rose from ~121 m below present level and increased at averaged rates up to ~15 mm/yr, which reduced the paleogeographic landscape by ~2.3 million km 2 . Projections under a moderate emissions scenario show sea level rising 0.95 m at a rate of 7.3 mm/yr by 2150 which has only been exceeded (at least 99% probability) during rapid ice mass loss events ~14.5 and ~9 thousand years ago. Projections under a high emissions scenario incorporating low confidence ice-sheet processes, however, have no precedent during the last deglaciation.  more » « less
Award ID(s):
2103754
NSF-PAR ID:
10431731
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous studies have interpreted Last Interglacial (LIG;129–116 ka) sea‐level estimates in multiple different ways to calibrate projections of future Antarctic ice‐sheet (AIS) mass loss and associated sea‐level rise. This study systematically explores the extent to which LIG constraints could inform future Antarctic contributions to sea‐level rise. We develop a Gaussian process emulator of an ice‐sheet model to produce continuous probabilistic projections of Antarctic sea‐level contributions over the LIG and a future high‐emissions scenario. We use a Bayesian approach conditioning emulator projections on a set of LIG constraints to find associated likelihoods of model parameterizations. LIG estimates inform both the probability of past and future ice‐sheet instabilities and projections of future sea‐level rise through 2150. Although best‐available LIG estimates do not meaningfully constrain Antarctic mass loss projections or physical processes until 2060, they become increasingly informative over the next 130 years. Uncertainties of up to 50 cm remain in future projections even if LIG Antarctic mass loss is precisely known (±5 cm), indicating that there is a limit to how informative the LIG could be for ice‐sheet model future projections. The efficacy of LIG constraints on Antarctic mass loss also depends on assumptions about the Greenland ice sheet and LIG sea‐level chronology. However, improved field measurements and understanding of LIG sea levels still have potential to improve future sea‐level projections, highlighting the importance of continued observational efforts.

     
    more » « less
  2. Abstract

    Sea-level rise submerges terrestrial permafrost in the Arctic, turning it into subsea permafrost. Subsea permafrost underlies ~ 1.8 million km2of Arctic continental shelf, with thicknesses in places exceeding 700 m. Sea-level variations over glacial-interglacial cycles control subsea permafrost distribution and thickness, yet no permafrost model has accounted for glacial isostatic adjustment (GIA), which deviates local sea level from the global mean due to changes in ice and ocean loading. Here we incorporate GIA into a pan-Arctic model of subsea permafrost over the last 400,000 years. Including GIA significantly reduces present-day subsea permafrost thickness, chiefly because of hydro-isostatic effects as well as deformation related to Northern Hemisphere ice sheets. Additionally, we extend the simulation 1000 years into the future for emissions scenarios outlined in the Intergovernmental Panel on Climate Change’s sixth assessment report. We find that subsea permafrost is preserved under a low emissions scenario but mostly disappears under a high emissions scenario.

     
    more » « less
  3. Abstract

    During the Last Interglacial, approximately 129 to 116 ka (thousand years ago), the Arctic summer climate was warmer than the present, and the Greenland Ice Sheet retreated to a smaller extent than its current state. Previous model‐derived and geological reconstruction estimates of the sea‐level contribution of the Greenland Ice Sheet during the Last Interglacial vary widely. Here, we conduct a transient climate simulation from 127 to 119 ka using the Community Earth System Model (CESM2), which includes a dynamic ice sheet component (the Community Ice Sheet Model, CISM2) that is interactively coupled to the atmosphere, land, ocean, and sea ice components. Vegetation distribution is updated every 500 years based on biomes simulated using a monthly climatology to force the BIOME4 equilibrium vegetation model. Results show a substantial retreat of the Greenland Ice Sheet, reaching a minimum extent at 121.9 ka, equivalent to a 3.0 m rise in sea level relative to the present day, followed by gradual regrowth. In contrast, a companion simulation employing static vegetation based on pre‐industrial conditions shows a much smaller ice‐sheet retreat, highlighting the importance of the changes in high‐latitude vegetation distribution for amplifying the ice‐sheet response.

     
    more » « less
  4. null (Ed.)
    One of the most fundamental changes predicted to occur under warming scenarios for Antarctica is the invasion of durophagous (shell-breaking or peeling) predators—like decapod crustaceans—which were last common in Antarctic waters during the warmer Eocene Period, over 30 million years ago. Since then, Antarctica’s shallow-water benthos developed Paleo- zoic (or deep-sea-like) ecosystems dominated by epi- benthic echinoderms. Despite the looming predatory carnage, little is known about how predators structure shallow subtidal communities in Antarctica, especially in regard to predation on shelled prey. We therefore need to have a baseline of shell repair—if it occurs— prior to the initial invasion of crabs. Here, we assess whether the shell of the Antarctic Scallop, Adamussium colbecki, living in the shallow subtidal under sea ice, records an ontogenetic history of shell repair. Shells of A. colbecki(n=623 valves; ~ 0.50 mm thick) were collected from shallow depths (6–24 m) within western McMurdo Sound, Ross Sea, from the coldest waters on Earth (-1.97 °C): Four sites in Explorers Cove (EC) with semi-permanent (decadal or more) sea ice and a Ferrar Glacier site (located ~30 km south of EC) with annual sea ice and icebergs. All sites were composed of fine sediments interspersed with glacial erratics that were more common at Ferrar than EC. Ju- venile (≤ 50 mm) and adult portions of the shells were examined under a dissecting scope for shell repair. Results indicate that repair did occur and was consistent with predatory damage: 1) valves had ste- reotypic damage patterns, both in style and spatial distribution; 2) there were five styles of repair rang- ing from typical crab-like (jagged) repair to elongate repair; 3) scallops living under ice scour regimes (Ferrar) did not have significantly different repair frequencies than those living under semi-permanent sea ice (EC sites); and 4) none of the shells had shell repair consistent with ice scour as described previ- ously for Laternula elliptica, an Antarctic burrowing bivalve. Frequency of repair varied between 0.04 and 0.26 for the five sites and depths (mean 0.10) and adults had the highest frequency of repair. The mean repair frequency is similar to infaunal Laternulafrom other semi-permanent sea ice sites in McMurdo Sound, but higher than those reported for epifaunal brachio- pods from the Antarctic Peninsula where ice scour does occur. We posit that shell repair can be used as an indicator of durophagy in Antarctica: The forensic agents are unexpectedly sea stars and possibly fish. In a warming world, this scallop may not survive long withboth an increase in ice scour and the putative ar- rival of shell-breaking crabs at ~1 °C. 
    more » « less
  5. Observational estimates of Antarctic ice loss have accelerated in recent decades, and worst-case scenarios of modeling studies have suggested potentially catastrophic sea level rise (~2 meters) by the end of the century. However, modeled contributions to global mean sea level from the Antarctic ice-sheet (AIS) in the 21st century are highly uncertain, in part because ice-sheet model parameters are poorly constrained. Individual ice-sheet model runs are also deterministic and not computationally efficient enough to generate the continuous probability distributions required for incorporation into a holistic framework of probabilistic sea-level projections. To address these shortfalls, we statistically emulate an ice-sheet model using Gaussian Process (GP) regression. GP modeling is a non-parametric machine-learning technique which maps inputs (e.g. forcing or model parameters) to target outputs (e.g. sea-level contributions from the Antarctic ice-sheet) and has the inherent and important advantage that emulator uncertainty is explicitly quantified. We construct emulators for the last interglacial period and an RCP8.5 scenario, and separately for the western, eastern, and total AIS. Separate emulation of western and eastern AIS is important because their evolutions and physical responses to climate forcing are distinct. The emulators are trained on 196 ensemble members for each scenario, composed by varying the parameters of maximum rate of ice-cliff wastage and the coefficient of hydrofracturing. We condition the emulators on last interglacial proxy sea-level records and modern GRACE measurements and exclude poor-fitting ensemble members. The resulting emulators are sampled to produce probability distributions that fill intermediate gaps between discrete ice-sheet model outcomes. We invert emulated high and low probability sea-level contributions in 2100 to explore 21st century evolution pathways; results highlight the deep uncertainty of ice-sheet model physics and the importance of using observations to narrow the range of parameters. Our approach is designed to be flexible such that other ice-sheet models or parameter spaces may be substituted and explored with the emulator. 
    more » « less