skip to main content

Title: Reconvergent Path-aware Simulation of Bit-stream Processing
Few studies have explored the complex circuit simulation of stochastic and unary computing systems, which are referred to under the umbrella term of bit-stream processing. The computer simulation of multi-level cascaded circuits with reconvergent paths has not been largely examined in the context of bit-stream processing systems. This study addresses this gap and proposes a contingency table-based reconvergent path-aware simulation method for fast and efficient simulation of multi-level circuits. The proposed method exhibits significantly better runtime and accuracy.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
33rd Great Lakes Symposium on VLSI (GLSVLSI)
Page Range / eLocation ID:
225 to 226
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stochastic computing (SC) is a re-emerging computing paradigm providing low-cost and noise-tolerant designs for a wide range of arithmetic operations. SC circuits operate on uniform bit-streams with the value determined by the probability of observing 1’s in the bit-stream. The accuracy of SC operations highly depends on the correlation between input bit-streams. While some operations such as minimum and maximum value functions require highly correlated inputs, some other such as multiplication operation need uncorrelated or independent inputs for accurate computation. Developing low-cost and accurate correlation manipulation circuits is an important research in SC as these circuits can manage correlation between bit-streams without expensive bit-stream regeneration. This work proposes a novel in-stream correlator and decorrelator circuit that manages 1) correlation between stochastic bit-streams, and 2) distribution of 1’s in the output bit-streams. Compared to state-of-the-art solutions, our designs achieve lower hardware cost and higher accuracy. The output bit-streams enjoy a low-discrepancy distribution of bits which leads to higher quality of results. The effectiveness of the proposed circuits is shown with two case studies: SC design of sorting and median filtering 
    more » « less
  2. Stochastic computing (SC) is a digital design paradigm that foregoes the conventional binary encoding in favor of pseudo-random bitstreams. Stochastic circuits operate on the probability values of bitstreams, and often achieve low power, low area, and fault-tolerant computation. Most SC designs rely on the input bitstreams being independent or uncorrelated to obtain the best results. However, circuits have also been proposed that exploit deliberately correlated bitstreams to improve area or accuracy. In such cases, different sub-circuits may have different correlation requirements. A major barrier to multi-layer or hierarchical stochastic circuit design has been understanding how correlation propagates while meeting the correlation requirements for all its sub-circuits. In this paper, we introduce correlation matrices and extensions to probability transfer matrix (PTM) algebra to analyze complex correlation behavior, thereby alleviating the need for computationally intensive bit-wise simulation. We apply our new correlation analysis to two multi-layer SC image processing and neural network circuits and show that it helps designers to systematically reduce correlation error. 
    more » « less
  3. Magnetic Random-Access Memory (MRAM) based p-bit neuromorphic computing devices are garnering increasing interest as a means to compactly and efficiently realize machine learning operations in Restricted Boltzmann Machines (RBMs). When embedded within an RBM resistive crossbar array, the p-bit based neuron realizes a tunable sigmoidal activation function. Since the stochasticity of activation is dependent on the energy barrier of the MRAM device, it is essential to assess the impact of process variation on the voltage-dependent behavior of the sigmoid function. Other influential performance factors arise from varying energy barriers on power consumption requiring a simulation environment to facilitate the multi-objective optimization of device and network parameters. Herein, transportable Python scripts are developed to analyze the output variation under changes in device dimensions on the accuracy of machine learning applications. Evaluation with RBM circuits using the MNIST dataset reveal impacts and limits for processing variation of device fabrication in terms of the resulting energy vs. accuracy tradeoffs, and the resulting simulation framework is available via a Creative Commons license. 
    more » « less
  4. Ivrii, Alexander ; Strichman, Ofer (Ed.)
    Systems mixing Boolean logic and arithmetic have been a long-standing challenge for verification tools such as SAT-based bit-vector solvers. Though SAT solvers can be highly efficient for Boolean reasoning, they scale poorly once multiplication is involved. Algebraic methods using Gröbner basis reduction have recently been used to efficiently verify multiplier circuits in isolation, but generally do not perform well on problems involving bit-level reasoning. We propose that pseudo-Boolean solvers equipped with cutting planes reasoning have the potential to combine the complementary strengths of the existing SAT and algebraic approaches while avoiding their weaknesses. Theoretically, we show that there are optimal-length cutting planes proofs for a large class of bit-level properties of some well known multiplier circuits. This scaling is significantly better than the smallest proofs known for SAT and, in some instances, for algebraic methods. We also show that cutting planes reasoning can extract bit-level consequences of word-level equations in exponentially fewer steps than methods based on Gröbner bases. Experimentally, we demonstrate that pseudo-Boolean solvers can verify the word-level equivalence of adder-based multiplier architectures, as well as commutativity of bit-vector multiplication, in times comparable to the best algebraic methods. We then go further than previous approaches and also verify these properties at the bit-level. Finally, we find examples of simple nonlinear bit-vector inequalities that are intractable for current bit-vector and SAT solvers but easy for pseudo-Boolean solvers. 
    more » « less
  5. In this paper, we propose an energy-efficient reconfigurable platform for in-memory processing based on novel 4-terminal spin Hall effect-driven domain wall motion devices that could be employed as both non-volatile memory cell and in-memory logic unit. The proposed designs lead to unity of memory and logic. The device to system level simulation results show that, with 28% area increase in memory structure, the proposed in-memory processing platform achieves a write energy ~15.6 fJ/bit with 79% reduction compared to that of SOT-MRAM counterpart while keeping the identical 1ns writing speed. In addition, the proposed in-memory logic scheme improves the operating energy by 61.3%, as compared with the recent non-volatile in-memory logic designs. An extensive reliability analysis is also performed over the proposed circuits. We employ Advanced Encryption Standard (AES) algorithm as a case study to elucidate the efficiency of the proposed platform at application level. Simulation results exhibit that the proposed platform can show up to 75.7% and 30.4% lower energy consumption compared to CMOS-ASIC and recent pipelined domain wall (DW) AES implementations, respectively. In addition, the AES Energy-Delay Product (EDP) can show 15.1% and 6.1% improvements compared to the DW-AES and CMOS-ASIC implementations, respectively. 
    more » « less