skip to main content


Title: A new buoyancy instability in galaxy clusters due to streaming cosmic rays
ABSTRACT

Active Galactic Nuclei (AGN) are believed to provide the energy that prevents runaway cooling of gas in the cores of galaxy clusters. However, how this energy is transported and thermalized throughout the Intracluster Medium (ICM) remains unclear. In recent work, we showed that streaming cosmic rays (CRs) destabilize sound waves in dilute ICM plasmas. Here, we show that CR streaming in the presence of gravity also destabilizes a pressure-balanced wave. We term this new instability the CR buoyancy instability (CRBI). In stark contrast to standard results without CRs, the pressure-balanced mode is highly compressible at short wavelengths due to CR streaming. Maximal growth rates are of order (pc/pg)β1/2ωff, where pc/pg is the ratio of CR pressure to thermal gas pressure, β is the ratio of thermal to magnetic pressure, and ωff is the free-fall frequency. The CRBI operates alongside buoyancy instabilities driven by background heat fluxes, i.e. the heat-flux-driven buoyancy instability (HBI) and the magneto-thermal instability (MTI). When the thermal mean free path lmfp is ≪ the gas scale height H, the HBI/MTI set the growth rate on large scales, while the CRBI sets the growth rate on small scales. Conversely, when lmfp ∼ H and (pc/pg)β1/2 ≳ 1, CRBI growth rates exceed HBI/MTI growth rates even on large scales. Our results suggest that CR-driven instabilities may be partially responsible for the sound waves/weak shocks and turbulence observed in galaxy clusters. CR-driven instabilities generated near radio bubbles may also play an important role redistributing AGN energy throughout clusters.

 
more » « less
Award ID(s):
2107872
NSF-PAR ID:
10431909
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
524
Issue:
2
ISSN:
0035-8711
Format(s):
Medium: X Size: p. 1893-1908
Size(s):
p. 1893-1908
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Heating of virialized gas by streaming cosmic rays (CRs) may be energetically important in galaxy haloes, groups, and clusters. We present a linear thermal stability analysis of plasmas heated by streaming CRs. We separately treat equilibria with and without background gradients, and with and without gravity. We include both CR streaming and diffusion along the magnetic-field direction. Thermal stability depends strongly on the ratio of CR pressure to gas pressure, which determines whether modes are isobaric or isochoric. Modes with $\boldsymbol {k \cdot B }\ne 0$ are strongly affected by CR diffusion. When the streaming time is shorter than the CR diffusion time, thermally unstable modes (with $\boldsymbol {k \cdot B }\ne 0$) are waves propagating at a speed ∝ the Alfvén speed. Halo gas in photoionization equilibrium is thermally stable independent of CR pressure, while gas in collisional ionization equilibrium is unstable for physically realistic parameters. In gravitationally stratified plasmas, the oscillation frequency of thermally overstable modes can be higher in the presence of CR streaming than the buoyancy/free-fall frequency. This may modify the critical tcool/tff at which multiphase gas is present. The criterion for convective instability of a stratified, CR-heated medium can be written in the familiar Schwarzschild form dseff/dz < 0, where seff is an effective entropy involving the gas and CR pressures. We discuss the implications of our results for the thermal evolution and multiphase structure of galaxy haloes, groups, and clusters. 
    more » « less
  2. ABSTRACT

    We use analytical calculations and time-dependent spherically symmetric simulations to study the properties of isothermal galactic winds driven by cosmic rays (CRs) streaming at the Alfvén velocity. The simulations produce time-dependent flows permeated by strong shocks; we identify a new linear instability of sound waves that sources these shocks. The shocks substantially modify the wind dynamics, invalidating previous steady state models: the CR pressure pc has a staircase-like structure with dpc/dr ≃ 0 in most of the volume, and the time-averaged CR energetics are in many cases better approximated by pc ∝ ρ1/2, rather than the canonical pc ∝ ρ2/3. Accounting for this change in CR energetics, we analytically derive new expressions for the mass-loss rate, momentum flux, wind speed, and wind kinetic power in galactic winds driven by CR streaming. We show that streaming CRs are ineffective at directly driving cold gas out of galaxies, though CR-driven winds in hotter ISM phases may entrain cool gas. For the same physical conditions, diffusive CR transport (Paper I) yields mass-loss rates that are a few-100 times larger than streaming transport, and asymptotic wind powers that are a factor of ≃4 larger. We discuss the implications of our results for galactic wind theory and observations; strong shocks driven by CR-streaming-induced instabilities produce gas with a wide range of densities and temperatures, consistent with the multiphase nature of observed winds. We also quantify the applicability of the isothermal gas approximation for modelling streaming CRs and highlight the need for calculations with more realistic thermodynamics.

     
    more » « less
  3. ABSTRACT

    Recently, cosmic rays (CRs) have emerged as a leading candidate for driving galactic winds. Small-scale processes can dramatically affect global wind properties. We run two-moment simulations of CR streaming to study how sound waves are driven unstable by phase-shifted CR forces and CR heating. We verify linear theory growth rates. As the sound waves grow non-linear, they steepen into a quasi-periodic series of propagating shocks; the density jumps at shocks create CR bottlenecks. The depth of a propagating bottleneck depends on both the density jump and its velocity; ΔPc is smaller for rapidly moving bottlenecks. A series of bottlenecks creates a CR staircase structure, which can be understood from a convex hull construction. The system reaches a steady state between growth of new perturbations, and stair mergers. CRs are decoupled at plateaus, but exert intense forces and heating at stair jumps. The absence of CR heating at plateaus leads to cooling, strong gas pressure gradients and further shocks. If bottlenecks are stationary, they can drastically modify global flows; if their propagation times are comparable to dynamical times, their effects on global momentum and energy transfer are modest. The CR acoustic instability is likely relevant in thermal interfaces between cold and hot gas, as well as galactic winds. Similar to increased opacity in radiative flows, the build-up of CR pressure due to bottlenecks can significantly increase mass outflow rates, by up to an order of magnitude. It seeds unusual forms of thermal instability, and the shocks could have distinct observational signatures, on ∼kpc scales.

     
    more » « less
  4. ABSTRACT

    We investigate how cosmic rays (CRs) affect thermal and hydrostatic stability of circumgalactic (CGM) gas, in simulations with both CR streaming and diffusion. Local thermal instability can be suppressed by CR-driven entropy mode propagation, in accordance with previous analytic work. However, there is only a narrow parameter regime where this operates, before CRs overheat the background gas. As mass dropout from thermal instability causes the background density and hence plasma β ≡ Pg/PB to fall, the CGM becomes globally unstable. At the cool disc-to-hot−halo interface, a sharp drop in density boosts Alfven speeds and CR gradients, driving a transition from diffusive to streaming transport. CR forces and heating strengthen, while countervailing gravitational forces and radiative cooling weaken, resulting in a loss of both hydrostatic and thermal equilibrium. In lower β haloes, CR heating drives a hot, single-phase diffuse wind with velocities v ∝ (theat/tff)−1, which exceeds the escape velocity when theat/tff ≲ 0.4. In higher β haloes, where the Alfven Mach number is higher, CR forces drive multi-phase winds with cool, dense fountain flows and significant turbulence. These flows are CR dominated due to ‘trapping’ of CRs by weak transverse B-fields, and have the highest mass loading factors. Thus, local thermal instability can result in winds or fountain flows where either the heat or momentum input of CRs dominates.

     
    more » « less
  5. ABSTRACT

    Cosmic rays (CRs) are thought to be an important feedback mechanism in star-forming galaxies. They can provide an important source of pressure support and possibly drive outflows. We perform multidimensional CR magnetohydrodynamic simulations including transport by streaming and diffusion to investigate wind launching from an initially hydrostatic atmosphere by CRs. We estimate a characteristic Eddington limit on the CR flux for which the CR force exceeds gravity and compare it to simulated systems. Scaling our results to conditions in star-forming galaxies, we find that CRs are likely to contribute to driving outflows for a broad range of star formation environments. We quantify the momentum and energy transfer between CRs and gas, along with the associated mass outflow rates under different assumptions about the relative importance of streaming and diffusion for transport. In simulations with streaming, we observe the growth and saturation of the CR acoustic instability, but the CRs and gas remain well coupled, with CR momentum transferred efficiently to the gas even when this instability is present. Higher CR fluxes transfer more energy to the gas and drive stronger outflows. When streaming is present, most of the transferred energy takes the form of Alfvén wave heating of the gas, raising its pressure and internal energy, with a lower fractional contribution to the kinetic energy of the outflow. We also consider runs with radiative cooling, which modifies gas temperature and pressure profiles but does not seem to have a large impact on the mass outflow for super-Eddington CR fluxes.

     
    more » « less