skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: Electron Beam Induced Current Study of Photocurrent Gain in κ-Ga 2 O 3 Schottky Diodes

Theκ-Ga2O3polytype is attracting attention because of its high spontaneous electric polarization, which exceeds that of III-Nitrides. However, little is known of its transport and photoconductive properties. The electron beam induced current gain effect in Schottky barriers prepared on thick films ofκ-Ga2O3has been studied. It is shown that the gain originates in the depletion region of the Schottky barrier. It is demonstrated that the induced current gain takes place only in some local regions, several which increases with applied bias. Such unusual behavior can be explained by an inhomogeneous distribution of hole traps or by a formation of conductive channels under applied bias.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Page Range / eLocation ID:
Article No. 044009
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. β-Ga2O3is an emerging material and has the potential to revolutionize power electronics due to its ultra-wide-bandgap (UWBG) and lower native substrate cost compared to Silicon Carbide and Gallium Nitride. Sinceβ-Ga2O3technology is still not mature, experimental study ofβ-Ga2O3is difficult and expensive. Technology-Computer-Aided Design (TCAD) is thus a cost-effective way to study the potentials and limitations ofβ-Ga2O3devices. In this paper, TCAD parameters calibrated to experiments are presented. They are used to perform the simulations in heterojunction p-NiO/n-Ga2O3diode, Schottky diode, and normally-off Ga2O3vertical FinFET. Besides the current-voltage (I-V) simulations, breakdown, capacitance-voltage (C-V), and short-circuit ruggedness simulations with robust setups are discussed. TCAD Sentaurus is used in the simulations but the methodologies can be applied in other simulators easily. This paves the road to performing a holistic study ofβ-Ga2O3devices using TCAD.

    more » « less
  2. The energy and beam current dependence of Ga+focused ion beam milling damage on the sidewall of vertical rectifiers fabricated on n-type Ga2O3was investigated with 5–30 kV ions and beam currents from 1.3–20 nA. The sidewall damage was introduced by etching a mesa along one edge of existing Ga2O3rectifiers. We employed on-state resistance, forward and reverse leakage current, Schottky barrier height, and diode ideality factor from the vertical rectifiers as potential measures of the extent of the ion-induced sidewall damage. Rectifiers of different diameters were exposed to the ion beams and the “zero-area” parameters extracted by extrapolating to zero area and normalizing for milling depth. Forward currents degraded with exposure to any of our beam conductions, while reverse current was unaffected. On-state resistance was found to be most sensitive of the device parameters to Ga+beam energy and current. Beam current was the most important parameter in creating sidewall damage. Use of subsequent lower beam energies and currents after an initial 30 kV mill sequence was able to reduce residual damage effects but not to the point of initial lower beam current exposures.

    more » « less
  3. Abstract

    A unique field termination structure combining a three-step field plate with nitrogen ion implantation to enhance the reverse breakdown performance of Pt/β-Ga2O3Schottky barrier diodes (SBDs) and NiO/β-Ga2O3heterojunction diodes (HJDs) is reported. The fabricated devices showed a lowRon,spof 6.2 mΩ cm2for SBDs and 6.8 mΩ cm2for HJDs. HJDs showed a 0.8 V turn-on voltage along with an ideality factor of 1.1 leading to a low effective on-resistance of 18 mΩ cm2. The devices also showed low reverse leakage current (<1 mA cm−2) and a breakdown voltage of ∼1.4 kV. These results offer an alternative, simpler route for fabricating high-performance kilovolt-classβ-Ga2O3diodes.

    more » « less
  4. Abstract

    Here, high power flexible Schottky barrier diodes (SBDs) are demonstrated on a plastic substrate using single crystalline β‐Ga2O3nanomembranes (NMs). In order to realize flexible high power β‐Ga2O3SBDs, sub‐micron thick freestanding β‐Ga2O3NMs are created from a bulk β‐Ga2O3substrate and transfer‐printed onto the plastic substrate via a microtransfer printing method. It is revealed that the material property of β‐Ga2O3NMs such as crystal structure, electron affinity, and bandgap remains unchanged compared with its bulk properties. Flexible β‐Ga2O3SBDs exhibit the record high critical breakdown field strength (Ec) of 1.2 MV cm−1in the flat condition and 1.07 MV cm−1ofEcunder the bending condition. Overall, flexible β‐Ga2O3SBDs offer great promise for future flexible energy convergence systems and are expected to provide a much larger and more versatile platform to address a broader range of high‐performance flexible applications.

    more » « less
  5. We report on growth and electrical properties of α-Ga2O3films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr2O3buffers predeposited on sapphire by magnetron sputtering. The α-Cr2O3buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr2O3bandgap and a sharp MCL line near 700 nm due to the Cr+intracenter transition. Ohmic contacts to Cr2O3were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga2O3films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at ECof 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr2O3buffer indicated the presence of two face-to-face junctions, one between n-Ga2O3and p-Cr2O3, the other due to the Ni Schottky diode with n-Ga2O3. The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga2O3system.

    more » « less