Abstract Geological events such as mountain uplift affect how, when, and where species diversify, but measuring those effects is a longstanding challenge. Andean orogeny impacted the evolution of regional biota by creating barriers to gene flow, opening new habitats, and changing local climate. Bomarea (Alstroemeriaceae) are tropical plants with (often) small, isolated ranges; in total, Bomarea species occur from central Mexico to central Chile. This genus appears to have evolved rapidly and quite recently, and rapid radiations are often challenging to resolve with traditional phylogenetic inference. In this study, we apply phylogenomics—with hundreds of loci, gene-tree-based data curation, and a multispecies-coalescent approach—to infer the phylogeny of Bomarea. We use this phylogeny to untangle the potential drivers of diversification and biogeographic history. In particular, we test if Andean orogeny contributed to the diversification of Bomarea. We find that Bomarea originated in the central Andes during the mid-Miocene, then spread north, following the trajectory of mountain uplift. Furthermore, Andean lineages diversified faster than non-Andean relatives. Bomarea thus demonstrates that—at least in some cases—geological change rather than environmental stability has driven high species diversity in a tropical biodiversity hotspot. These results also demonstrate the utility (and danger) of genome-scale data for making macroevolutionary inferences.
more »
« less
Elevational range extension of the Puna Mouse, Punomys (Cricetidae), with the first record of the genus from Chile
Abstract We report an elevational record for the Andean sigmodontine Puna Mouse Punomys, which is also the first record of the genus in Chile. The record is based on a mummified specimen that we discovered at an elevation of 5,461 m (17,917 feet) in the caldera of Volcán Acamarachi, Región de Antofagasta, Chile. Results of a morphological assessment suggest that the specimen can be provisionally referred to the species P. lemminus. This new record also extends the known geographic distribution of the genus by 700 km to the south and brings the known Chilean mammal richness to a total of 170 living species and 88 genera. This finding highlights the need for increased survey efforts in more remote, high-elevation regions and demonstrates that there is still much to be learned about the mammal fauna of the Andean Altiplano.
more »
« less
- PAR ID:
- 10431958
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Journal of Mammalogy
- Volume:
- 104
- Issue:
- 5
- ISSN:
- 0022-2372
- Format(s):
- Medium: X Size: p. 1144-1151
- Size(s):
- p. 1144-1151
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Early Cretaceous ichthyosaurs were globally distributed pelagic marine reptiles, but many remains are fragmentary, creating a Northern Hemisphere diversity bias. A rich Hauterivian locality near the Tyndall Glacier inside Torres del Paine National Park in southern Chile yields important new data regarding ichthyosaurian diversity along the Pacific margin of Gondwana. These new data will contribute to clarifying questions regarding ichthyosaur taxonomy and the palaeobiogeographical relationships between the southern Gondwanan and Northern Hemisphere ichthyosaur groups during the Early Cretaceous. Here, we describe three new ichthyosaur specimens from this locality. Two of them are referred to Myobradypterygius hauthali, expanding the distribution of this species from the Barremian of Argentina to the Hauterivian of the Chilean Patagonia. This material shows that M. hauthali differs from Platypterygius platydactylus in forefin construction and scapular morphology, supporting its classification as a separate genus within Platypterygiinae. The third specimen is a large-bodied indeterminate ophthalmosaurine ichthyosaur. This record represents the southernmost record of Ophthalmosaurinae and the first occurrence of this group from the Cretaceous of the Southern Hemisphere. These discoveries show that ophthalmosaurines and platypterygiines continued to occur sympatrically in southernmost Gondwana during the Early Cretaceous, expanding the pattern documented in Europe to the Pacific region.more » « less
-
null (Ed.)Environmental limits of animal life are invariably revised when the animals themselves are investigated in their natural habitats. Here we report results of a scientific mountaineering expedition to survey the high-altitude rodent fauna of Volcán Llullaillaco in the Puna de Atacama of northern Chile, an effort motivated by video documentation of mice (genus Phyllotis ) at a record altitude of 6,205 m. Among numerous trapping records at altitudes of >5,000 m, we captured a specimen of the yellow-rumped leaf-eared mouse ( Phyllotis xanthopygus rupestris ) on the very summit of Llullaillaco at 6,739 m. This summit specimen represents an altitudinal world record for mammals, far surpassing all specimen-based records from the Himalayas and other mountain ranges. This discovery suggests that we may have generally underestimated the altitudinal range limits and physiological tolerances of small mammals simply because the world’s high summits remain relatively unexplored by biologists.more » « less
-
Abstract Biologists have long pondered the extreme limits of life on Earth, including the maximum elevation at which species can live and reproduce. Here we review evidence of a self-sustaining population of mice at an elevation that exceeds that of all previously reported for mammals. Five expeditions over 10 years to Volcán Llullaillaco on the Argentina/Chile border observed and collected mice at elevations ranging from 5,070 m at the mountain’s base to the summit at 6,739 m (22,110 feet). Previously unreported evidence includes observations and photographs of live animals and mummified remains, environmental DNA, and a soil microbial community reflecting animal activity that are evaluated in combination with previously reported video recordings and capture of live mice. All of the evidence identifies the mouse as the leaf-eared mouse Phyllotis vaccarum, and it robustly places the population within a haplotype group containing individuals from the Chilean Atacama Desert and nearby regions of Argentina. A critical review of the literature affirms that this population is not only an elevational record for mammals but for all terrestrial vertebrates to date, and we further find that many extreme elevations previously reported for mammals are based on scant or dubious evidence.more » « less
-
Abstract The diversity of specialized molecules produced by plants radiating along ecological gradients is thought to arise from plants' adaptations to local conditions. Therefore, closely related species growing in similar habitats should phylogenetically converge, or diverge, in response to similar climates, or similar interacting animal communities. We here asked whether closely related species in the genusHaplopappus(Asteraceae) growing within the same elevation bands in the Andes, converged to produce similar floral odors. To do so, we combine untargeted analysis of floral volatile organic compounds with insect olfactory bioassay in congenericHaplopappus(Asteraceae) species growing within the same elevation bands along the Andean elevational gradient. We then asked whether the outcome of biotic interactions (i.e., pollination vs. seed predation) would also converge across species within the same elevation. We found that flower odors grouped according to their elevational band and that the main floral visitor preferred floral heads from low‐elevation band species. Furthermore, the cost–benefit ratio of predated versus fertilized seeds was consistent within elevation bands, but increased with elevation, from 6:1 at low to 8:1 at high elevations. In the light of our findings, we propose that climate and insect community changes along elevation molded a common floral odor blend, best adapted for the local conditions. Moreover, we suggest that at low elevation where floral resources are abundant, the per capita cost of attracting seed predators is diluted, while at high elevation, sparse plants incur a higher herbivory cost per capita. Together, our results suggest that phytochemical convergence may be an important factor driving plant–insect interactions and their ecological outcomes along ecological gradients.more » « less
An official website of the United States government
