skip to main content


Title: Global scale phylogeography of functional traits and microdiversity in Prochlorococcus
Abstract

Prochlorococcus is the most numerically abundant photosynthetic organism in the surface ocean. The Prochlorococcus high-light and warm-water adapted ecotype (HLII) is comprised of extensive microdiversity, but specific functional differences between microdiverse sub-clades remain elusive. Here we characterized both functional and phylogenetic diversity within the HLII ecotype using Bio-GO-SHIP metagenomes. We found widespread variation in gene frequency connected to local environmental conditions. Metagenome-assembled marker genes and genomes revealed a globally distributed novel HLII haplotype defined by adaptation to chronically low P conditions (HLII-P). Environmental correlation analysis revealed different factors were driving gene abundances verses phylogenetic differences. An analysis of cultured HLII genomes and metagenome-assembled genomes revealed a subclade within HLII, which corresponded to the novel HLII-P haplotype. This work represents the first global assessment of the HLII ecotype’s phylogeography and corresponding functional differences. These findings together expand our understanding of how microdiversity structures functional differences and reveals the importance of nutrients as drivers of microdiversity in Prochlorococcus.

 
more » « less
NSF-PAR ID:
10432067
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
The ISME Journal
Volume:
17
Issue:
10
ISSN:
1751-7362
Format(s):
Medium: X Size: p. 1671-1679
Size(s):
p. 1671-1679
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The globally abundant marine Cyanobacteria Prochlorococcus and Synechococcus share many physiological traits but presumably have different evolutionary histories and associated phylogeography. In Prochlorococcus, there is a clear phylogenetic hierarchy of ecotypes, whereas multiple Synechococcus clades have overlapping physiologies and environmental distributions. However, microbial traits are associated with different phylogenetic depths. Using this principle, we reclassified diversity at different phylogenetic levels and compared the phylogeography. We sequenced the genetic diversity of Prochlorococcus and Synechococcus from 339 samples across the tropical Pacific Ocean and North Atlantic Ocean using a highly variable phylogenetic marker gene (rpoC1). We observed clear parallel niche distributions of ecotypes leading to high Pianka’s Index values driven by distinct shifts at two transition points. The first transition point at 6°N distinguished ecotypes adapted to warm waters but separated by macronutrient content. At 39°N, ecotypes adapted to warm, low macronutrient vs. colder, high macronutrient waters shifted. Finally, we detected parallel vertical and regional single-nucleotide polymorphism microdiversity within clades from both Prochlorococcus and Synechococcus, suggesting uniquely adapted populations at very specific depths, as well as between the Atlantic and Pacific Oceans. Overall, this study demonstrates that Prochlorococcus and Synechococcus have shared phylogenetic organization of traits and associated phylogeography.

     
    more » « less
  2. Abstract

    Establishing links between microbial diversity and environmental processes requires resolving the high degree of functional variation among closely related lineages or ecotypes. Here, we implement and validate an improved metagenomic approach that estimates the spatial biogeography and environmental regulation of ecotype-specific replication patterns (RObs) across ocean regions. A total of 719 metagenomes were analyzed from meridional Bio-GO-SHIP sections in the Atlantic and Indian Ocean. Accounting for sequencing bias and anchoring replication estimates in genome structure were critical for identifying physiologically relevant biological signals. For example, ecotypes within the dominant marine cyanobacteria Prochlorococcus exhibited distinct diel cycles in RObs that peaked between 19:00–22:00. Additionally, both Prochlorococcus ecotypes and ecotypes within the highly abundant heterotroph Pelagibacter (SAR11) demonstrated systematic biogeographies in RObs that differed from spatial patterns in relative abundance. Finally, RObs was significantly regulated by nutrient stress and temperature, and explained by differences in the genomic potential for nutrient transport, energy production, cell wall structure, and replication. Our results suggest that our new approach to estimating replication is reflective of gross population growth. Moreover, this work reveals that the interaction between adaptation and environmental change drives systematic variability in replication patterns across ocean basins that is ecotype-specific, adding an activity-based dimension to our understanding of microbial niche space.

     
    more » « less
  3. Abstract

    Pan-genome analyses of metagenome-assembled genomes (MAGs) may suffer from the known issues with MAGs: fragmentation, incompleteness and contamination. Here, we conducted a critical assessment of pan-genomics of MAGs, by comparing pan-genome analysis results of complete bacterial genomes and simulated MAGs. We found that incompleteness led to significant core gene (CG) loss. The CG loss remained when using different pan-genome analysis tools (Roary, BPGA, Anvi’o) and when using a mixture of MAGs and complete genomes. Contamination had little effect on core genome size (except for Roary due to in its gene clustering issue) but had major influence on accessory genomes. Importantly, the CG loss was partially alleviated by lowering the CG threshold and using gene prediction algorithms that consider fragmented genes, but to a less degree when incompleteness was higher than 5%. The CG loss also led to incorrect pan-genome functional predictions and inaccurate phylogenetic trees. Our main findings were supported by a study of real MAG-isolate genome data. We conclude that lowering CG threshold and predicting genes in metagenome mode (as Anvi’o does with Prodigal) are necessary in pan-genome analysis of MAGs. Development of new pan-genome analysis tools specifically for MAGs are needed in future studies.

     
    more » « less
  4. The extent and ecological significance of intraspecific functional diversity within marine microbial populations is still poorly understood, and it remains unclear if such strain-level microdiversity will affect fitness and persistence in a rapidly changing ocean environment. In this study, we cultured 11 sympatric strains of the ubiquitous marine picocyanobacteriumSynechococcusisolated from a Narragansett Bay (RI) phytoplankton community thermal selection experiment. Thermal performance curves revealed selection at cool and warm temperatures had subdivided the initial population into thermotypes with pronounced differences in maximum growth temperatures. Curiously, the genomes of all 11 isolates were almost identical (average nucleotide identities of >99.99%, with >99% of the genome aligning) and no differences in gene content or single nucleotide variants were associated with either cool or warm temperature phenotypes. Despite a very high level of genomic similarity, sequenced epigenomes for two strains showed differences in methylation on genes associated with photosynthesis. These corresponded to measured differences in photophysiology, suggesting a potential pathway for future mechanistic research into thermal microdiversity. Our study demonstrates that present-day marine microbial populations can harbor cryptic but environmentally relevant thermotypes which may increase their resilience to future rising temperatures.

     
    more » « less
  5. Abstract

    Evolutionary adaptations of prokaryotes to the environment sometimes result in genome reduction. Our knowledge of this phenomenon among free‐living bacteria remains scarce. We address the dynamics and limits of genome reduction by examining one of the most abundant bacteria in the ocean, the SAR86 clade. Despite its abundance, comparative genomics has been limited by the absence of pure cultures and the poor representation in metagenome‐assembled genomes. We co‐assembled multiple previously available single‐amplified genomes to obtain the first complete genomes from members of the four families. All families showed a convergent evolutionary trajectory with characteristic features of streamlined genomes, most pronounced in the TMED112 family. This family has a genome size of ca. 1 Mb and only 1 bp as median intergenic distance, exceeding values found in other abundant microbes such as SAR11, OM43 andProchlorococcus. This genomic simplification led to a reduction in the biosynthesis of essential molecules, DNA repair‐related genes, and the ability to sense and respond to environmental factors, which could suggest an evolutionary dependence on other co‐occurring microbes for survival (Black Queen hypothesis). Therefore, these reconstructed genomes within the SAR86 clade provide new insights into the limits of genome reduction in free‐living marine bacteria.

     
    more » « less