Species in the genus This study investigated the mode and tempo of functional trait evolution across 15 species of We found evidence for phylogenetic conservatism of the niche descriptor height‐above‐water‐table and of traits related to growth, decay and litter quality. However, we failed to detect the influence of phylogeny on interspecific variation in other traits such as shoot density and suggest that environmental context can obscure phylogenetic signal. Trait correlations indicate possible adaptive syndromes that may relate to niche and its construction. This study is the first to formally test the extent to which functional trait variation among
Predicting ecosystem function is critical to assess and mitigate the impacts of climate change. Quantitative predictions of microbially mediated ecosystem processes are typically uninformed by microbial biodiversity. Yet new tools allow the measurement of taxon-specific traits within natural microbial communities. There is mounting evidence of a phylogenetic signal in these traits, which may support prediction and microbiome management frameworks. We investigated phylogeny-based trait prediction using bacterial growth rates from soil communities in Arctic, boreal, temperate, and tropical ecosystems. Here we show that phylogeny predicts growth rates of soil bacteria, explaining an average of 31%, and up to 58%, of the variation within ecosystems. Despite limited overlap in community composition across these ecosystems, shared nodes in the phylogeny enabled ancestral trait reconstruction and cross-ecosystem predictions. Phylogenetic relationships could explain up to 38% (averaging 14%) of the variation in growth rates across the highly disparate ecosystems studied. Our results suggest that shared evolutionary history contributes to similarity in the relative growth rates of related bacteria in the wild, allowing phylogeny-based predictions to explain a substantial amount of the variation in taxon-specific functional traits, within and across ecosystems.
more » « less- PAR ID:
- 10432072
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- ISME Communications
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2730-6151
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Sphagnum create, maintain, and dominate boreal peatlands through ‘extended phenotypes’ that allow these organisms to engineer peatland ecosystems and thereby impact global biogeochemical cycles. One such phenotype is the production of peat, or incompletely decomposed biomass, that accumulates when rates of growth exceed decomposition. Interspecific variation in peat production is thought to be responsible for the establishment and maintenance of ecological gradients such as the microtopographic hummock‐hollow gradient, along which sympatric species sort within communities.Sphagnum using data from the most extensive studies ofSphagnum functional traits to date and phylogenetic comparative methods.Sphagnum species is a result of shared evolutionary history. -
Abstract Nitrogen (N) deposition increases soil carbon (C) storage by reducing microbial activity. These effects vary in soil beneath trees that associate with arbuscular (AM) and ectomycorrhizal (ECM) fungi. Variation in carbon C and N uptake traits among microbes may explain differences in soil nutrient cycling between mycorrhizal associations in response to high N loads, a mechanism not previously examined due to methodological limitations. Here, we used quantitative Stable Isotope Probing (qSIP) to measure bacterial C and N assimilation rates from an added organic compound, which we conceptualize as functional traits. As such, we applied a trait‐based approach to explore whether variation in assimilation rates of bacterial taxa can inform shifts in soil function under chronic N deposition. We show taxon‐specific and community‐wide declines of bacterial C and N uptake under chronic N deposition in both AM and ECM soils. N deposition‐induced reductions in microbial activity were mirrored by declines in soil organic matter mineralization rates in AM but not ECM soils. Our findings suggest C and N uptake traits of bacterial communities can predict C cycling feedbacks to N deposition in AM soils, but additional data, for instance on the traits of fungi, may be needed to connect microbial traits with soil C and N cycling in ECM systems. Our study also highlights the potential of employing qSIP in conjunction with trait‐based analytical approaches to inform how ecological processes of microbial communities influence soil functioning.
-
Abstract Functional traits of organisms, especially feeding traits, influence how organisms mediate ecosystem processes. As climate change, landscape modification and industrial waste heat release continue to increase water temperatures, shifts in the composition of feeding traits within aquatic macroinvertebrate communities may alter ecosystem processes. However, it is unclear whether thermal traits of macroinvertebrates vary systematically across functional feeding groups (FFGs; i.e., categories based on feeding ecology such as herbivores, shredders, predators, etc.) or phylogeny. We used previously published datasets on hundreds of macroinvertebrate taxa to evaluate how thermal traits differed across FFGs. We also examined the strength of phylogenetic signal in both FFG and thermal traits, using a new phylogeny of insect taxa. Then, we tested whether phylogenetic patterns offered a plausible explanation for differences in thermal traits among FFGs by comparing phylogenetic and non‐phylogenetic regressions. Shredders tended to have lower temperature preferences, optima and maxima (three of five of the thermal traits evaluated) than other FFGs. Patterns for other FFGs differed by thermal trait, but predators, collector‐gatherers and filterers had some of the highest thermal trait values. FFG explained 40% of the variation in critical thermal maximum, but <12% of the variation in the four other thermal traits. Phylogeny explained 26%–88% of the variation in thermal and feeding traits. For the subset of taxa and trait data that were available, phylogeny explained more than double the variation in thermal traits relative to FFG, but comparison of phylogenetic and non‐phylogenetic regressions highlighted that FFG explained variation in thermal traits that was independent of phylogeny. Our results highlight phylogeny and FFG as predictors of thermal traits in aquatic macroinvertebrates. Our results suggest that warmer water temperatures could favour predators, filterers and collector‐gatherers over shredders. Furthermore, our results confirm that certain orders of macroinvertebrates, such as Diptera, may be better suited to warmer temperatures than other orders, such as Plecoptera.more » « less
-
Abstract The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant–soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response—reduced growth—was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon‐specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long‐term experimental warming also reduced soil carbon content, likely a consequence of a warming‐induced increase in decomposition, as warming‐induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long‐term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.
-
Abstract The spatial and temporal linkages between turnover of soil microbial communities and their associated functions remain largely unexplored in terrestrial ecosystems. Yet defining these relationships and how they vary across ecosystems and microbial lineages is key to incorporating microbial communities into ecological forecasts and ecosystem models. To define linkages between turnover of soil bacterial and fungal communities and their function we sampled fungal and bacterial composition, abundance, and enzyme activities across a 3‐ha area of wet tropical primary forest over 2 yr. We show that fungal and bacterial communities both exhibited temporal turnover, but turnover of both groups was much lower than in temperate ecosystems. Turnover over time was driven by gain and loss of microbial taxa and not changes in abundance of individual species present in multiple samples. Only fungi varied over space with idiosyncratic variation that did not increase linearly with distance among sampling locations. Only phosphorus‐acquiring enzyme activities were linked to shifts in septate, decomposer fungal abundance; no enzymes were affected by composition or diversity of fungi or bacteria. Although temporal and spatial variation in composition was appreciable, because turnover of microbial communities did not alter the functional repertoire of decomposing enzymes, functional redundancy among taxa may be high in this ecosystem. Slow temporal turnover of tropical soil microbial communities and large functional redundancy suggests that shifts in abundance of particular functional groups may capture ecosystem function more accurately than composition in these heterogeneous ecosystems.