skip to main content


Title: Semi-supervised machine learning workflow for analysis of nanowire morphologies from transmission electron microscopy images
In the field of materials science, microscopy is the first and often only accessible method for structural characterization. There is a growing interest in the development of machine learning methods that can automate the analysis and interpretation of microscopy images. Typically training of machine learning models requires large numbers of images with associated structural labels, however, manual labeling of images requires domain knowledge and is prone to human error and subjectivity. To overcome these limitations, we present a semi-supervised transfer learning approach that uses a small number of labeled microscopy images for training and performs as effectively as methods trained on significantly larger image datasets. Specifically, we train an image encoder with unlabeled images using self-supervised learning methods and use that encoder for transfer learning of different downstream image tasks (classification and segmentation) with a minimal number of labeled images for training. We test the transfer learning ability of two self-supervised learning methods: SimCLR and Barlow-Twins on transmission electron microscopy (TEM) images. We demonstrate in detail how this machine learning workflow applied to TEM images of protein nanowires enables automated classification of nanowire morphologies ( e.g. , single nanowires, nanowire bundles, phase separated) as well as segmentation tasks that can serve as groundwork for quantification of nanowire domain sizes and shape analysis. We also extend the application of the machine learning workflow to classification of nanoparticle morphologies and identification of different type of viruses from TEM images.  more » « less
Award ID(s):
1921871
NSF-PAR ID:
10432103
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Digital Discovery
Volume:
1
Issue:
6
ISSN:
2635-098X
Page Range / eLocation ID:
816 to 833
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Motivation

    Morphological analyses with flatmount fluorescent images are essential to retinal pigment epithelial (RPE) aging studies and thus require accurate RPE cell segmentation. Although rapid technology advances in deep learning semantic segmentation have achieved great success in many biomedical research, the performance of these supervised learning methods for RPE cell segmentation is still limited by inadequate training data with high-quality annotations.

    Results

    To address this problem, we develop a Self-Supervised Semantic Segmentation (S4) method that utilizes a self-supervised learning strategy to train a semantic segmentation network with an encoder–decoder architecture. We employ a reconstruction and a pairwise representation loss to make the encoder extract structural information, while we create a morphology loss to produce the segmentation map. In addition, we develop a novel image augmentation algorithm (AugCut) to produce multiple views for self-supervised learning and enhance the network training performance. To validate the efficacy of our method, we applied our developed S4 method for RPE cell segmentation to a large set of flatmount fluorescent microscopy images, we compare our developed method for RPE cell segmentation with other state-of-the-art deep learning approaches. Compared with other state-of-the-art deep learning approaches, our method demonstrates better performance in both qualitative and quantitative evaluations, suggesting its promising potential to support large-scale cell morphological analyses in RPE aging investigations.

    Availability and implementation

    The codes and the documentation are available at: https://github.com/jkonglab/S4_RPE.

     
    more » « less
  2. ABSTRACT Introduction

    Remote military operations require rapid response times for effective relief and critical care. Yet, the military theater is under austere conditions, so communication links are unreliable and subject to physical and virtual attacks and degradation at unpredictable times. Immediate medical care at these austere locations requires semi-autonomous teleoperated systems, which enable the completion of medical procedures even under interrupted networks while isolating the medics from the dangers of the battlefield. However, to achieve autonomy for complex surgical and critical care procedures, robots require extensive programming or massive libraries of surgical skill demonstrations to learn effective policies using machine learning algorithms. Although such datasets are achievable for simple tasks, providing a large number of demonstrations for surgical maneuvers is not practical. This article presents a method for learning from demonstration, combining knowledge from demonstrations to eliminate reward shaping in reinforcement learning (RL). In addition to reducing the data required for training, the self-supervised nature of RL, in conjunction with expert knowledge-driven rewards, produces more generalizable policies tolerant to dynamic environment changes. A multimodal representation for interaction enables learning complex contact-rich surgical maneuvers. The effectiveness of the approach is shown using the cricothyroidotomy task, as it is a standard procedure seen in critical care to open the airway. In addition, we also provide a method for segmenting the teleoperator’s demonstration into subtasks and classifying the subtasks using sequence modeling.

    Materials and Methods

    A database of demonstrations for the cricothyroidotomy task was collected, comprising six fundamental maneuvers referred to as surgemes. The dataset was collected by teleoperating a collaborative robotic platform—SuperBaxter, with modified surgical grippers. Then, two learning models are developed for processing the dataset—one for automatic segmentation of the task demonstrations into a sequence of surgemes and the second for classifying each segment into labeled surgemes. Finally, a multimodal off-policy RL with rewards learned from demonstrations was developed to learn the surgeme execution from these demonstrations.

    Results

    The task segmentation model has an accuracy of 98.2%. The surgeme classification model using the proposed interaction features achieved a classification accuracy of 96.25% averaged across all surgemes compared to 87.08% without these features and 85.4% using a support vector machine classifier. Finally, the robot execution achieved a task success rate of 93.5% compared to baselines of behavioral cloning (78.3%) and a twin-delayed deep deterministic policy gradient with shaped rewards (82.6%).

    Conclusions

    Results indicate that the proposed interaction features for the segmentation and classification of surgical tasks improve classification accuracy. The proposed method for learning surgemes from demonstrations exceeds popular methods for skill learning. The effectiveness of the proposed approach demonstrates the potential for future remote telemedicine on battlefields.

     
    more » « less
  3. null (Ed.)
    High-throughput phenotyping enables the efficient collection of plant trait data at scale. One example involves using imaging systems over key phases of a crop growing season. Although the resulting images provide rich data for statistical analyses of plant phenotypes, image processing for trait extraction is required as a prerequisite. Current methods for trait extraction are mainly based on supervised learning with human labeled data or semisupervised learning with a mixture of human labeled data and unsupervised data. Unfortunately, preparing a sufficiently large training data is both time and labor-intensive. We describe a self-supervised pipeline (KAT4IA) that uses K -means clustering on greenhouse images to construct training data for extracting and analyzing plant traits from an image-based field phenotyping system. The KAT4IA pipeline includes these main steps: self-supervised training set construction, plant segmentation from images of field-grown plants, automatic separation of target plants, calculation of plant traits, and functional curve fitting of the extracted traits. To deal with the challenge of separating target plants from noisy backgrounds in field images, we describe a novel approach using row-cuts and column-cuts on images segmented by transform domain neural network learning, which utilizes plant pixels identified from greenhouse images to train a segmentation model for field images. This approach is efficient and does not require human intervention. Our results show that KAT4IA is able to accurately extract plant pixels and estimate plant heights. 
    more » « less
  4. Event-based cameras have shown great promise in a variety of situations where frame based cameras suffer, such as high speed motions and high dynamic range scenes. However, developing algorithms for event measurements requires a new class of hand crafted algorithms. Deep learning has shown great success in providing model free solutions to many problems in the vision community, but existing networks have been developed with frame based images in mind, and there does not exist the wealth of labeled data for events as there does for images for supervised training. To these points, we present EV-FlowNet, a novel self-supervised deep learning pipeline for optical flow estimation for event based cameras. In particular, we introduce an image based representation of a given event stream, which is fed into a self-supervised neural network as the sole input. The corresponding grayscale images captured from the same camera at the same time as the events are then used as a supervisory signal to provide a loss function at training time, given the estimated flow from the network. We show that the resulting network is able to accurately predict optical flow from events only in a variety of different scenes, with performance competitive to image based networks. This method not only allows for accurate estimation of dense optical flow, but also provides a framework for the transfer of other self-supervised methods to the event-based domain. 
    more » « less
  5. Electron microscopy images of carbon nanotube (CNT) forests are difficult to segment due to the long and thin nature of the CNTs; density of the CNT forests resulting in CNTs touching, crossing, and occluding each other; and low signal-to-noise ratio electron microscopy imagery. In addition, due to image complexity, it is not feasible to prepare training segmentation masks. In this paper, we propose CNTSegNet, a dual loss, orientation-guided, self-supervised, deep learning network for CNT forest segmentation in scanning electron microscopy (SEM) images. Our training labels consist of weak segmentation labels produced by intensity thresholding of the raw SEM images and self labels produced by estimating orientation distribution of CNTs in these raw images. The proposed network extends a U-net-like encoder-decoder architecture with a novel two-component loss function. The first component is dice loss computed between the predicted segmentation maps and the weak segmentation labels. The second component is mean squared error (MSE) loss measuring the difference between the orientation histogram of the predicted segmentation map and the original raw image. Weighted sum of these two loss functions is used to train the proposed CNTSegNet network. The dice loss forces the network to perform background-foreground segmentation using local intensity features. The MSE loss guides the network with global orientation features and leads to refined segmentation results. The proposed system needs only a few-shot dataset for training. Thanks to it’s self-supervised nature, it can easily be adapted to new datasets. 
    more » « less