skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building on the past to help prepare the workforce for the future with automated vehicles: A systematic review of automated passenger vehicle deployment timelines
Award ID(s):
2041215
PAR ID:
10432131
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Technology in Society
Volume:
72
Issue:
C
ISSN:
0160-791X
Page Range / eLocation ID:
102186
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. We explore the Collatz conjecture and its variants through the lens of termination of string rewriting. We construct a rewriting system that simulates the iterated application of the Collatz function on strings corresponding to mixed binary–ternary representations of positive integers. Termination of this rewriting system is equivalent to the Collatz conjecture. To show the feasibility of our approach in proving mathematically interesting statements, we implement a minimal termination prover that uses the automated method of matrix/arctic interpretations and we perform experiments where we obtain proofs of nontrivial weakenings of the Collatz conjecture. Finally, we adapt our rewriting system to show that other open problems in mathematics can also be approached as termination problems for relatively small rewriting systems. Although we do not succeed in proving the Collatz conjecture, we believe that the ideas here represent an interesting new approach. 
    more » « less
  3. Abstract We explore the Collatz conjecture and its variants through the lens of termination of string rewriting. We construct a rewriting system that simulates the iterated application of the Collatz function on strings corresponding to mixed binary–ternary representations of positive integers. We prove that the termination of this rewriting system is equivalent to the Collatz conjecture. We also prove that a previously studied rewriting system that simulates the Collatz function using unary representations does not admit termination proofs via natural matrix interpretations, even when used in conjunction with dependency pairs. To show the feasibility of our approach in proving mathematically interesting statements, we implement a minimal termination prover that uses natural/arctic matrix interpretations and we find automated proofs of nontrivial weakenings of the Collatz conjecture. Although we do not succeed in proving the Collatz conjecture, we believe that the ideas here represent an interesting new approach. 
    more » « less