skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of an ecophysiology module in the GEOS-Chem chemical transport model version 12.2.0 to represent biosphere–atmosphere fluxes relevant for ozone air quality
Abstract. Ground-level ozone (O3) is a major air pollutant that adversely affects human health and ecosystem productivity. Removal of troposphericO3 by plant stomatal uptake can in turn cause damage to plant tissues with ramifications for ecosystem and crop health. In manyatmospheric and land surface models, the functionality of stomata opening is represented by a bulk stomatal conductance, which is oftensemi-empirically parameterized and highly fitted to historical observations. A lack of mechanistic linkage to ecophysiological processes such asphotosynthesis may render models inadequate to represent plant-mediated responses of atmospheric chemistry to long-term changes in CO2,climate, and short-lived air pollutant concentrations. A new ecophysiology module was thus developed to mechanistically simulate land−atmosphereexchange of important gas species in GEOS-Chem, a chemical transport model widely used in atmospheric chemistry studies. The implementation not onlyallows for dry deposition to be coupled with plant ecophysiology but also enables plant and crop productivity and functions to respond dynamically toatmospheric chemical changes. We conduct simulations to evaluate the effects of the ecophysiology module on simulated dry deposition velocity andconcentration of surface O3 against an observation-derived dataset known as SynFlux. Our estimated stomatal conductance and dry depositionvelocity of O3 are close to SynFlux with root-mean-squared errors (RMSEs) below 0.3 cm s−1 across different plant functionaltypes (PFTs), despite an overall positive bias in surface O3 concentration (by up to 16 ppbv). Representing ecophysiology wasfound to reduce the simulated biases in deposition fluxes from the prior model but worsen the positive biases in simulated O3concentrations. The increase in positive concentration biases is mostly attributable to the ecophysiology-based stomatal conductance being generallysmaller (and closer to SynFlux values) than that estimated by the prior semi-empirical formulation, calling for further improvements in non-stomataldepositional and non-depositional processes relevant for O3 simulations. The estimated global O3 deposition flux is864 Tg O3 yr−1 with GEOS-Chem, and the new module decreases this estimate by 92 Tg O3 yr−1. Estimated global grossprimary production (GPP) without O3 damage is 119 Pg C yr−1. O3-induced reduction in GPP is 4.2 Pg C yr−1(3.5 %). An elevated CO2 scenario (580 ppm) yields higher global GPP (+16.8 %) and lower global O3depositional sink (−3.3 %). Global isoprene emission simulated with a photosynthesis-based scheme is 317.9 Tg C yr−1, which is31.2 Tg C yr−1 (−8.9 %) less than that calculated using the MEGAN(Model of Emissions of Gases and Aerosols from Nature) emission algorithm. This new model development dynamicallyrepresents the two-way interactions between vegetation and air pollutants and thus provides a unique capability in evaluating vegetation-mediatedprocesses and feedbacks that can shape atmospheric chemistry and air quality, as well as pollutant impacts on vegetation health, especially for anytimescales shorter than the multidecadal timescale.  more » « less
Award ID(s):
1848372
PAR ID:
10432275
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Geoscientific Model Development
Volume:
16
Issue:
9
ISSN:
1991-9603
Page Range / eLocation ID:
2323 to 2342
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Dry deposition is a key process for surface ozone(O3) removal. Stomatal uptake is a major component of O3 drydeposition, which is parameterized differently in current land surfacemodels and chemical transport models. We developed and used a standaloneterrestrial biosphere model, driven by a unified set of prescribedmeteorology, to evaluate two widely used dry deposition modeling frameworks,Wesely (1989) and Zhang et al. (2003), with different configurations ofstomatal resistance: (1) the default multiplicative method in the Weselyscheme (W89) and Zhang et al. (2003) scheme (Z03), (2) the traditionalphotosynthesis-based Farquhar–Ball–Berry (FBB) stomatal algorithm, and (3) theMedlyn stomatal algorithm (MED) based on optimization theory. We found thatusing the FBB stomatal approach that captures ecophysiological responses toenvironmental factors, especially to water stress, can generally improve thesimulated dry deposition velocities compared with multiplicative schemes.The MED stomatal approach produces higher stomatal conductance than FBB andis likely to overestimate dry deposition velocities for major vegetationtypes, but its performance is greatly improved when spatially varying slopeparameters based on annual mean precipitation are used. Large discrepancieswere also found in stomatal responses to rising CO2 levels from 390to 550 ppm: the multiplicative stomatal method with an empirical CO2response function produces reduction (−35 %) in global stomatalconductance on average much larger than that with the photosynthesis-basedstomatal method (−14 %–19 %). Our results show the potential biases inO3 sink caused by errors in model structure especially in the Weselydry deposition scheme and the importance of using photosynthesis-basedrepresentation of stomatal resistance in dry deposition schemes under achanging climate and rising CO2 concentration. 
    more » « less
  2. Abstract. Tropospheric ozone is a major air pollutant and greenhouse gas. It is also the primary precursor of OH, the main tropospheric oxidant. Global atmospheric chemistry models show large differences in their simulations of tropospheric ozone budgets. Here we implement the widely used GEOS-Chem atmospheric chemistry module as an alternative to CAM-chem within the Community Earth System Model version 2 (CESM2). We compare the resulting GEOS-Chem and CAM-chem simulations of tropospheric ozone and related species within CESM2 to observations from ozonesondes, surface sites, the ATom-1 aircraft campaign over the Pacific and Atlantic, and the KORUS-AQ aircraft campaign over the Seoul Metropolitan Area. We find that GEOS-Chem and CAM-chem within CESM2 have similar tropospheric ozone budgets and concentrations usually within 5 ppb but important differences in the underlying processes including (1) photolysis scheme (no aerosol effects in CAM-chem), (2) aerosol nitrate photolysis, (3) N2O5 cloud uptake, (4) tropospheric halogen chemistry, and (5) ozone deposition to the oceans. Global tropospheric OH concentrations are the same in both models, but there are large regional differences reflecting the above processes. Carbon monoxide is lower in CAM-chem (and lower than observations), at least in part because of higher OH concentrations in the Northern Hemisphere and insufficient production from isoprene oxidation in the Southern Hemisphere. CESM2 does not scavenge water-soluble gases in convective updrafts, leading to some upper-tropospheric biases. Comparison to KORUS-AQ observations shows an overestimate of ozone above 4 km altitude in both models, which at least in GEOS-Chem is due to inadequate scavenging of particulate nitrate in convective updrafts in CESM2, leading to excessive NO production from nitrate photolysis. The KORUS-AQ comparison also suggests insufficient boundary layer mixing in CESM2. This implementation and evaluation of GEOS-Chem in CESM2 contribute to the MUSICA vision of modularizing tropospheric chemistry in Earth system models. 
    more » « less
  3. Mercury (Hg), a neurotoxic heavy metal, is transferred to marine and terrestrial ecosystems through atmospheric transport. Recent studies have highlighted the role of vegetation uptake as a sink for atmospheric elemental mercury (Hg0) and a source of Hg to soils. However, the global magnitude of the Hg0 vegetation uptake flux is highly uncertain, with estimates ranging 1000–4000 Mg per year. To constrain this sink, we compare simulations in the chemical transport model GEOS-Chem with a compiled database of litterfall, throughfall, and flux tower measurements from 93 forested sites. The prior version of GEOS-Chem predicts median Hg0 dry deposition velocities similar to litterfall measurements from Northern hemisphere temperate and boreal forests (~0.03 cm s-1 yet it underestimates measurements from a flux tower study (0.04 cm s-1 vs. 0.07 cm s-1and Amazon litterfall (0.05 cm s-1 vs. 0.17 cm s-1). After revising the Hg0 reactivity within the dry deposition parametrization to match flux tower and Amazon measurements, GEOS-Chem displays improved agreement with the seasonality of atmospheric Hg0 observations in the Northern midlatitudes. Additionally, the modelled bias in Hg0 concentrations in South America decreases from +0.21 ng m-3 +0.05 ng m-3. We calculate a global flux of Hg0 dry deposition to land of 2276 Mg per year, approximately double previous model estimates. The Amazon rainforest contributes 29% of the total Hg0 land sink, yet continued deforestation and climate change threatens the rainforest's stability and thus its role as an important Hg sink. In an illustrative worst-case scenario where the Amazon is completely converted to savannah, GEOS-Chem predicts that an additional 283 Mg Hg per year would deposit to the ocean, where it can bioaccumulate in the marine food chain. Biosphere–atmosphere interactions thus play a crucial role in global Hg cycling and should be considered in assessments of future Hg pollution. 
    more » « less
  4. Abstract Dry deposition is the second largest tropospheric ozone (O3) sink and occurs through stomatal and nonstomatal pathways. Current O3uptake predictions are limited by the simplistic big‐leaf schemes commonly used in chemical transport models (CTMs) to parameterize deposition. Such schemes fail to reproduce observed O3fluxes over terrestrial ecosystems, highlighting the need for more realistic treatment of surface‐atmosphere exchange in CTMs. We address this need by linking a resolved canopy model (1D Multi‐Layer Canopy CHemistry and Exchange Model, MLC‐CHEM) to the GEOS‐Chem CTM and use this new framework to simulate O3fluxes over three north temperate forests. We compare results with in situ measurements from four field studies and with standalone, observationally constrained MLC‐CHEM runs to test current knowledge of O3deposition and its drivers. We show that GEOS‐Chem overpredicts observed O3fluxes across all four studies by up to 2×, whereas the resolved‐canopy models capture observed diel profiles of O3deposition and in‐canopy concentrations to within 10%. Relative humidity and solar irradiance are strong O3flux drivers over these forests, and uncertainties in those fields provide the largest remaining source of model deposition biases. Flux partitioning analysis shows that: (a) nonstomatal loss accounts for 60% of O3deposition on average; (b) in‐canopy chemistry makes only a small contribution to total O3fluxes; and (c) the CTM big‐leaf treatment overestimates O3‐driven stomatal loss and plant phytotoxicity in these temperate forests by up to 7×. Results motivate the application of fully online vertically explicit canopy schemes in CTMs for improved O3predictions. 
    more » « less
  5. Abstract. Our work explores the impact of two important dimensions of landsystem changes, land use and land cover change (LULCC) as well as directagricultural reactive nitrogen (Nr) emissions from soils, on ozone(O3) and fine particulate matter (PM2.5) in terms of air quality overcontemporary (1992 to 2014) timescales. We account for LULCC andagricultural Nr emissions changes with consistent remote sensingproducts and new global emission inventories respectively estimating theirimpacts on global surface O3 and PM2.5 concentrations as well as Nrdeposition using the GEOS-Chem global chemical transport model. Over thistime period, our model results show that agricultural Nr emissionchanges cause a reduction of annual mean PM2.5 levels over Europe andnorthern Asia (up to −2.1 µg m−3) while increasing PM2.5 levels in India, China and the eastern US (up to +3.5 µg m−3). Land cover changes induce small reductions in PM2.5 (up to −0.7 µg m−3) over Amazonia, China and India due to reduced biogenic volatile organic compound (BVOC) emissions and enhanced deposition of aerosol precursor gases (e.g., NO2, SO2). Agricultural Nr emissionchanges only lead to minor changes (up to ±0.6 ppbv) in annual meansurface O3 levels, mainly over China, India and Myanmar. Meanwhile, ourmodel result suggests a stronger impact of LULCC on surface O3 over the time period across South America; the combination of changes in drydeposition and isoprene emissions results in −0.8 to +1.2 ppbv surfaceozone changes. The enhancement of dry deposition reduces the surface ozone level (up to −1 ppbv) over southern China, the eastern US and central Africa. The enhancement of soil NO emission due to crop expansion also contributes to surface ozone changes (up to +0.6 ppbv) over sub-Saharan Africa. Incertain regions, the combined effects of LULCC and agricultural Nr emission changes on O3 and PM2.5 air quality can be comparable (>20 %) to anthropogenic emission changes over the same time period. Finally, we calculate that the increase in global agricultural Nr emissions leads to a net increase in global land area (+3.67×106km2) that potentially faces exceedance of the critical Nr load (>5 kg N ha−1 yr−1). Our result demonstrates the impacts of contemporary LULCC and agricultural Nr emission changes on PM2.5 and O3 in terms of air quality, as well as the importanceof land system changes for air quality over multidecadal timescales. 
    more » « less