skip to main content


Title: Cleavage of Carbon Dioxide C=O Bond Promoted by Nickel‐Boron Cooperativity in a PBP‐Ni Complex
Abstract

The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

 
more » « less
NSF-PAR ID:
10432331
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
62
Issue:
34
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The synthesis and characterization of (tBuPBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni−C bond of (tBuPBP)NiMe (1) is presented. An unexpected CO2cleavage process involving the formation of new B−O and Ni−CO bonds leads to the generation of a butterfly‐structured tetra‐nickel cluster (tBuPBOP)2Ni4(μ‐CO)2(6). Mechanistic investigation of this reaction indicates a reductive scission of CO2by O‐atom transfer to the boron atom via a cooperative nickel‐boron mechanism. The CO2activation reaction produces a three‐coordinate (tBuP2BO)Ni‐acyl intermediate (A) that leads to a (tBuP2BO)−NiIcomplex (B) via a likely radical pathway. The NiIspecies is trapped by treatment with the radical trap (2,2,6,6‐tetramethylpiperidin‐1‐yl)oxyl (TEMPO) to give (tBuP2BO)NiII2‐TEMPO) (7). Additionally,13C and1H NMR spectroscopy analysis using13C‐enriched CO2provides information about the species involved in the CO2activation process.

     
    more » « less
  2. Abstract

    The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] (2) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] (1) with 2.3 equivalents of KC8in THF, in the presence of 2.2.2‐cryptand, at −78 °C. Complex2reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] (4) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of2was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).

     
    more » « less
  3. Abstract

    The “masked” terminal Zn sulfide, [K(2.2.2‐cryptand)][MeLZn(S)] (2) (MeL={(2,6‐iPr2C6H3)NC(Me)}2CH), was isolated via reaction of [MeLZnSCPh3] (1) with 2.3 equivalents of KC8in THF, in the presence of 2.2.2‐cryptand, at −78 °C. Complex2reacts readily with PhCCH and N2O to form [K(2.2.2‐cryptand)][MeLZn(SH)(CCPh)] (4) and [K(2.2.2‐cryptand)][MeLZn(SNNO)] (5), respectively, displaying both Brønsted and Lewis basicity. In addition, the electronic structure of2was examined computationally and compared with the previously reported Ni congener, [K(2.2.2‐cryptand)][tBuLNi(S)] (tBuL={(2,6‐iPr2C6H3)NC(tBu)}2CH).

     
    more » « less
  4. Abstract

    The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (25), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of25. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

     
    more » « less
  5. Abstract

    The addition of non‐benzenoid quinones, acenapthenequinone or aceanthrenequinone, to the 9‐carbene‐9‐borafluorene monoanion (1) affords the first examples of dianionic 10‐membered bora‐crown ethers (25), which are characterized by multi‐nuclear NMR spectroscopy (1H,13C,11B), X‐ray crystallography, elemental analysis, and UV/Vis spectroscopy. These tetraoxadiborecines have distinct absorption profiles based on the positioning of the alkali metal cations. When compound4, which has a vacant C4B2O4cavity, is reacted with sodium tetrakis[3,5‐bis(trifluoromethyl)phenyl]borate, a color change from purple to orange serves as a visual indicator of metal binding to the central ring, whereby the Na+ion coordinates to four oxygen atoms. A detailed theoretical analysis of the calculated reaction energetics is provided to gain insight into the reaction mechanism for the formation of25. These data, and the electronic structures of proposed intermediates, indicate that the reaction proceeds via a boron enolate intermediate.

     
    more » « less