skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data station: delegated, trustworthy, and auditable computation to enable data-sharing consortia with a data escrow
Pooling and sharing data increases and distributes its value. But since data cannot be revoked once shared, scenarios that require controlled release of data for regulatory, privacy, and legal reasons default to not sharing. Because selectively controlling what data to release is difficult, the few data-sharing consortia that exist are often built around data-sharing agreements resulting from long and tedious one-off negotiations. We introduce Data Station, a data escrow designed to enable the formation of data-sharing consortia. Data owners share data with the escrow knowing it will not be released without their consent. Data users delegate their computation to the escrow. The data escrow relies on delegated computation to execute queries without releasing the data first. Data Station leverages hardware enclaves to generate trust among participants, and exploits the centralization of data and computation to generate an audit log. We evaluate Data Station on machine learning and data-sharing applications while running on an untrusted intermediary. In addition to important qualitative advantages, we show that Data Station: i) outperforms federated learning baselines in accuracy and runtime for the machine learning application; ii) is orders of magnitude faster than alternative secure data-sharing frameworks; and iii) introduces small overhead on the critical path.  more » « less
Award ID(s):
2040718
PAR ID:
10432429
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the VLDB Endowment
Volume:
15
Issue:
11
ISSN:
2150-8097
Page Range / eLocation ID:
3172 to 3185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Organizations that would mutually benefit from pooling their data are otherwise wary of sharing. This is because sharing data is costly—in time and effort—and, at the same time, the benefits of sharing are not clear. Without a clear cost-benefit analysis, participants default in not sharing. As a consequence, many opportunities to create valuable data-sharing consortia never materialize and the value of data remains locked. We introduce a new sharing model, market protocol, and algorithms to incentivize the creation of data-sharing markets. The combined contributions of this paper, which we call DSC, incentivize the creation of data-sharing markets that unleash the value of data for its participants. The sharing model introduces two incentives; one that guarantees that participating is better than not doing so, and another that compensates participants according to how valuable is their data. Because operating the consortia is costly, we are also concerned with ensuring its operation is sustainable: we design a protocol that ensures that valuable data-sharing consortia form when it is sustainable. We introduce algorithms to elicit the value of data from the participants, which is used to: first, cover the costs of operating the consortia, and second compensate data contributions. For the latter, we challenge the use of the Shapley value to allocate revenue. We offer analytical and empirical evidence for this and introduce an alternative method that compensates participants better and leads to the formation of more data-sharing consortia. 
    more » « less
  2. Multi-Party Computation (MPC) is an important technique used to enable computation over confidential data from several sources. The public cloud provides a unique opportunity to enable MPC in a low latency environment. Field Programmable Gate Array (FPGA) hardware adoption allows for both MPC acceleration and utilization of low latency, high bandwidth communication networks that substantially improve the performance of MPC applications. In this work, we show how designing arithmetic and Boolean Multi-Party Computation gates for FPGAs in a cloud provide improvements to current MPC offerings and ease their use in applications such as machine learning. We focus on the usage of Secret Sharing MPC first designed by Araki et al to design our FPGA MPC while also providing a comparison with those utilizing Garbled Circuits for MPC. We show that Secret Sharing MPC provides a better usage of cloud resources, specifically FPGA acceleration, than Garbled Circuits and is able to use at least a 10x less computer resources as compared to the original design using CPUs. 
    more » « less
  3. Nowadays, scientific simulations on high-performance computing (HPC) systems can generate large amounts of data (in the scale of terabytes or petabytes) per run. When this huge amount of HPC data is processed by machine learning applications, the training overhead will be significant. Typically, the training process for a neural network can take several hours to complete, if not longer. When machine learning is applied to HPC scientific data, the training time can take several days or even weeks. Transfer learning, an optimization usually used to save training time or achieve better performance, has potential for reducing this large training overhead. In this paper, we apply transfer learning to a machine learning HPC application. We find that transfer learning can reduce training time without, in most cases, significantly increasing the error. This indicates transfer learning can be very useful for working with HPC datasets in machine learning applications. 
    more » « less
  4. In graph machine learning, data collection, sharing, and analysis often involve multiple parties, each of which may require varying levels of data security and privacy. To this end, preserving privacy is of great importance in protecting sensitive information. In the era of big data, the relationships among data entities have become unprecedentedly complex, and more applications utilize advanced data structures (i.e., graphs) that can support network structures and relevant attribute information. To date, many graph-based AI models have been proposed (e.g., graph neural networks) for various domain tasks, like computer vision and natural language processing. In this paper, we focus on reviewing privacypreserving techniques of graph machine learning. We systematically review related works from the data to the computational aspects. We rst review methods for generating privacy-preserving graph data. Then we describe methods for transmitting privacy-preserved information (e.g., graph model parameters) to realize the optimization-based computation when data sharing among multiple parties is risky or impossible. In addition to discussing relevant theoretical methodology and software tools, we also discuss current challenges and highlight several possible future research opportunities for privacy-preserving graph machine learning. Finally, we envision a uni ed and comprehensive secure graph machine learning system. 
    more » « less
  5. Sharing high-quality research data specifically for reuse in future work helps the scientific community progress by enabling researchers to build upon existing work and explore new research questions without duplicating data collection efforts. Because current discussions about research artifacts in Computer Security focus on reproducibility and availability of source code, the reusability of data is unclear. We examine data sharing practices in Computer Security and Measurement to provide resources and recommendations for sharing reusable data. Our study covers five years (2019–2023) and seven conferences in Computer Security and Measurement, identifying 948 papers that create a dataset as one of their contributions. We analyze the 265 accessible datasets, evaluating their under-standability and level of reuse. Our findings reveal inconsistent practices in data sharing structure and documentation, causing some datasets to not be shared effectively. Additionally, reuse of datasets is low, especially in fields where the nature of the data does not lend itself to reuse. Based on our findings, we offer data-driven recommendations and resources for improving data sharing practices in our community. Furthermore, we encourage authors to be intentional about their data sharing goals and align their sharing strategies with those goals. 
    more » « less