skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: The WISE-2MASS Survey: Red Quasars Into the Radio Quiet Regime
Abstract We present a highly complete sample of broad-line (Type 1) QSOs out to z ∼ 3 selected by their mid-infrared colors, a method that is minimally affected by dust reddening. We remove host-galaxy emission from the spectra and fit for excess reddening in the residual QSOs, resulting in a Gaussian distribution of colors for unreddened (blue) QSOs, with a tail extending toward heavily reddened (red) QSOs, defined as having E ( B − V ) > 0.25. This radio-independent selection method enables us to compare red and blue QSO radio properties in both the FIRST (1.4 GHz) and VLASS (2–4 GHz) surveys. Consistent with recent results from optically selected QSOs from SDSS, we find that red QSOs have a significantly higher detection fraction and a higher fraction of compact radio morphologies at both frequencies. We employ radio stacking to investigate the median radio properties of the QSOs including those that are undetected in FIRST and VLASS, finding that red QSOs have significantly brighter radio emission and steeper radio spectral slopes compared with blue QSOs. Finally, we find that the incidence of red QSOs is strongly luminosity dependent, where red QSOs make up >40% of all QSOs at the highest luminosities. Overall, red QSOs comprise ∼40% of higher luminosity QSOs, dropping to only a few percent at lower luminosities. Furthermore, red QSOs make up a larger percentage of the radio-detected QSO population. We argue that dusty AGN-driven winds are responsible for both the obscuration as well as excess radio emission seen in red QSOs.  more » « less
Award ID(s):
2108402
NSF-PAR ID:
10432527
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
934
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
119
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report the discovery of a candidate dual QSO atz= 1.889, a redshift that is in the era known as “cosmic noon” where most of the universe’s black hole and stellar mass growth occurred. The source was identified in Hubble Space Telescope WFC3/IR images of a dust-reddened QSO that showed two closely separated point sources at a projected distance of 0.″26, or 2.2 kpc. This red QSO was targeted for imaging to explore whether red QSOs are hosted by merging galaxies. We subsequently obtained a spatially resolved Space Telescope Imaging Spectrograph spectrum of the system, covering the visible spectral range, and verifying the presence of two distinct QSO components. We also obtained high-resolution radio continuum observations with the Very Long Baseline Array at 1.4 GHz (21 cmLband) and found two sources coincident with the optical positions. The sources have similar black hole masses, bolometric luminosities, and radio-loudness parameters. However, their colors and reddenings differ significantly. The redder QSO has a higher Eddington ratio, consistent with previous findings. We consider the possibility of gravitational lensing and find that it would require extreme and unlikely conditions. If confirmed as a bona fide dual QSO, this system would link dust reddening to galaxy and supermassive black hole mergers, opening up a new population in which to search for samples of dual active galactic nuclei.

     
    more » « less
  2. ABSTRACT

    We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which ∼70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV ∼ 4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional ‘blow-out’ phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO.

     
    more » « less
  3. Abstract

    Luminous fast blue optical transients (LFBOTs) such as AT2018cow form a rare class of engine-powered explosions of uncertain origin. A hallmark feature of these events is radio/millimeter synchrotron emission powered by the interaction of fast ≳0.1cejecta and dense circumstellar material (CSM) extending to large radii ≳1016cm surrounding the progenitor. Assuming this CSM to be an outflow from the progenitor, we show that dust grains up to ∼1μm in size can form in the outflow in the years before the explosion. This dusty CSM would attenuate the transient’s ultraviolet emission prior to peak light, before being destroyed by the rising luminosity, reddening the premaximum colors (consistent with the premaximum red-to-blue color evolution of the LFBOT candidate MUSSES2020J). Reradiation by the dust before being destroyed generates a near-infrared (NIR) “echo” of luminosity ∼1041–1042erg s−1lasting weeks, which is detectable over the transient’s rapidly fading blue continuum. We show that this dust echo is compatible with the previously unexplained NIR excess observed in AT2018cow. The gradual decay of the early NIR light curve can result from CSM, which is concentrated in a wide-angle equatorial outflow or torus, consistent with the highly aspherical geometry of AT2018cow’s ejecta. Premaximum optical/UV and NIR follow-up of LFBOTs provide a new probe of their CSM environments and place additional constraints on their progenitors.

     
    more » « less
  4. Abstract

    To facilitate new studies of galaxy-merger-driven fueling of active galactic nuclei (AGNs), we present a catalog of 387 AGNs that we have identified in the final population of over 10,000z< 0.15 galaxies observed by the Sloan Digital Sky Survey-IV (SDSS-IV) integral field spectroscopy survey Mapping Nearby Galaxies at Apache Point Observatory (MaNGA). We selected the AGNs via mid-infrared Wide-field Infrared Survey Explorer colors, Swift/Burst Alert Telescope ultra-hard X-ray detections, NRAO Very Large Array Sky Survey and Faint Images of the Radio Sky at Twenty centimeters radio observations, and broad emission lines in SDSS spectra. By combining the MaNGA AGN catalog with a new SDSS catalog of galaxy mergers that were identified based on a suite of hydrodynamical simulations of merging galaxies, we study the link between galaxy mergers and nuclear activity for AGNs above a limiting bolometric luminosity of 1044.4erg s−1. We find an excess of AGNs in mergers, relative to nonmergers, for galaxies with stellar mass ∼1011M, where the AGN excess is somewhat stronger in major mergers than in minor mergers. Further, when we combine minor and major mergers and sort by merger stage, we find that the highest AGN excess occurs in post-coalescence mergers in the highest-mass galaxies. However, we find no evidence of a correlation between galaxy mergers and AGN luminosity or accretion rate. In summary, while galaxy mergers overall do appear to trigger or enhance AGN activity more than nonmergers, they do not seem to induce higher levels of accretion or higher luminosities. We provide the MaNGA AGN Catalog and the MaNGA Galaxy Merger Catalog for the community here.

     
    more » « less
  5. Abstract

    Observations with the James Webb Space Telescope (JWST) have uncovered numerous faint active galactic nuclei (AGN) atz∼ 5 and beyond. These objects are key to our understanding of the formation of supermassive black holes (SMBHs), their coevolution with host galaxies, as well as the role of AGN in cosmic reionization. Using photometric colors and size measurements, we perform a search for compact red objects in an array of blank deep JWST/NIRCam fields totaling ∼640 arcmin2. Our careful selection yields 260 reddened AGN candidates at 4 <zphot< 9, dominated by a point-source-like central component (〈reff〉 < 130 pc) and displaying a dichotomy in their rest-frame colors (blue UV and red optical slopes). Quasar model fitting reveals our objects to be moderately dust-extincted (AV∼ 1.6), which is reflected in their inferred bolometric luminosities ofLbol= 1044–47erg s−1and fainter UV magnitudesMUV≃ −17 to −22. Thanks to the large areas explored, we extend the existing dusty AGN luminosity functions to both fainter and brighter magnitudes, estimating their number densities to be ×100 higher than for UV-selected quasars of similar magnitudes. At the same time, they constitute only a small fraction of all UV-selected galaxies at similar redshifts, but this percentage rises to ∼10% forMUV∼ − 22 atz∼ 7. Finally, assuming a conservative case of accretion at the Eddington rate, we place a lower limit on the SMBH mass function atz∼ 5, finding it to be consistent with both theory and previous JWST observations.

     
    more » « less