We constrain the orbital period (Porb) distribution of low-mass detached main-sequence eclipsing binaries (EBs) with light-curves from the Zwicky Transient Facility (ZTF), which provides a well-understood selection function and sensitivity to faint stars. At short periods (Porb ≲ 2 d), binaries are predicted to evolve significantly due to magnetic braking (MB), which shrinks orbits and ultimately brings detached binaries into contact. The period distribution is thus a sensitive probe of MB. We find that the intrinsic period distribution of low-mass (0.1 ≲ M1/M⊙ < 0.9) binaries is basically flat (${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^0$) from Porb = 10 d down to the contact limit. This is strongly inconsistent with predictions of classical MB models based on the Skumanich relation, which are widely used in binary evolution calculations and predict ${\rm d}N/{\rm d}P_{\rm orb} \propto P_{\rm orb}^{7/3}$ at short periods. The observed distributions are best reproduced by models in which the magnetic field saturates at short periods with a MB torque that scales roughly as $\dot{J}\propto P_{\rm orb}^{-1}$, as opposed to $\dot{J} \propto P_{\rm orb}^{-3}$ in the standard Skumanich law. We also find no significant difference between the period distributions of binaries containing fully and partially convective stars. Our results confirm that a saturated MB law, which was previously found to describe the spin-down of rapidly rotating isolated M dwarfs, also operates in tidally locked binaries. We advocate using saturated MB models in binary evolution calculations. Our work supports previous suggestions that MB in cataclysmic variables (CVs) is much weaker than assumed in the standard evolutionary model, unless mass transfer leads to significant additional angular momentum loss in CVs.
Solar-type stars, which shed angular momentum via magnetized stellar winds, enter the main sequence with a wide range of rotational periods Prot. This initially wide range of rotational periods contracts and has mostly vanished by a stellar age $t\sim {0.6}\, {\rm Gyr}$, after which Solar-type stars spin according to the Skumanich relation $P_\text{rot}\propto \sqrt{t}$. Magnetohydrodynamic stellar wind models can improve our understanding of this convergence of rotation periods. We present wind models of 15 young Solar-type stars aged ∼24 Myr to ∼0.13 Gyr. With our previous wind models of stars aged ∼0.26 and ∼0.6 Gyr we obtain 30 consistent three-dimensional wind models of stars mapped with Zeeman–Doppler imaging – the largest such set to date. The models provide good cover of the pre-Skumanich phase of stellar spin-down in terms of rotation, magnetic field, and age. We find the mass-loss rate $\dot{M}\propto \Phi ^{{0.9\pm 0.1}}$ with a residual spread of ∼150 per cent and the wind angular momentum loss rate $\dot{J}\propto {}P_\text{rot}^{-1} \Phi ^{1.3\pm 0.2}$ with a residual spread of ∼500 per cent where Φ is the unsigned surface magnetic flux. When comparing different magnetic field scalings for each single star we find a gradual reduction in the power-law exponent with increasing magnetic field strength.
more » « less- PAR ID:
- 10432575
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 524
- Issue:
- 2
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 2042-2063
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract We present stellar rotation periods for late K- and early M-dwarf members of the 4 Gyr old open cluster M67 as calibrators for gyrochronology and tests of stellar spin-down models. Using Gaia EDR3 astrometry for cluster membership and Pan-STARRS (PS1) photometry for binary identification, we build this set of rotation periods from a campaign of monitoring M67 with the Canada–France–Hawaii Telescope’s MegaPrime wide-field imager. We identify 1807 members of M67, of which 294 are candidate single members with significant rotation period detections. Moreover, we fit a polynomial to the period versus color-derived effective temperature sequence observed in our data. We find that the rotation of very cool dwarfs can be explained by simple solid-body spin-down between 2.7 and 4 Gyr. We compare this rotational sequence to the predictions of gyrochronological models and find that the best match is Skumanich-like spin-down,
P rot∝t 0.62, applied to the sequence of Ruprecht 147. This suggests that, for spectral types K7–M0 with near-solar metallicity, once a star resumes spinning down, a simple Skumanich-like relation is sufficient to describe their rotation evolution, at least through the age of M67. Additionally, for stars in the range M1–M3, our data show that spin-down must have resumed prior to the age of M67, in conflict with the predictions of the latest spin-down models. -
Abstract The zero-age main sequence (ZAMS) is a critical phase for stellar angular momentum evolution, as stars transition from contraction-dominated spin-up to magnetic wind-dominated spin-down. We present the first robust observational constraints on rotation for FGK stars at ≈40 Myr. We have analyzed TESS light curves for 1410 members of five young open clusters with ages between 25 and 55 Myr: IC 2391, IC 2602, NGC 2451A, NGC 2547, and Collinder 135. In total, we measure 868 rotation periods, including 96 new, high-quality periods for stars around 1
M ⊙. This is an increase of ten times the existing literature sample at the ZAMS. We then use theτ 2method to compare our data to models for stellar angular momentum evolution. Although the ages derived from these rotation models do not match isochronal ages, we show that these observations can clearly discriminate between different models for stellar wind torques. Finally,τ 2fits indicate that magnetic braking and/or internal angular momentum transport significantly impact rotational evolution even on the pre-main sequence. -
Abstract Despite a growing sample of precisely measured stellar rotation periods and ages, the strength of magnetic braking and the degree of departure from standard (Skumanich-like) spin-down have remained persistent questions, particularly for stars more evolved than the Sun. Rotation periods can be measured for stars older than the Sun by leveraging asteroseismology, enabling models to be tested against a larger sample of old field stars. Because asteroseismic measurements of rotation do not depend on starspot modulation, they avoid potential biases introduced by the need for a stellar dynamo to drive starspot production. Using a neural network trained on a grid of stellar evolution models and a hierarchical model-fitting approach, we constrain the onset of weakened magnetic braking (WMB). We find that a sample of stars with asteroseismically measured rotation periods and ages is consistent with models that depart from standard spin-down prior to reaching the evolutionary stage of the Sun. We test our approach using neural networks trained on model grids produced by separate stellar evolution codes with differing physical assumptions and find that the choices of grid physics can influence the inferred properties of the braking law. We identify the normalized critical Rossby number Rocrit/Ro⊙= 0.91 ± 0.03 as the threshold for the departure from standard rotational evolution. This suggests that WMB poses challenges to gyrochronology for roughly half of the main-sequence lifetime of Sun-like stars.
-
Abstract We present a study of the relationship between Galactic kinematics, flare rates, chromospheric activity, and rotation periods for a volume-complete, nearly all-sky sample of 219 single stars within 15 pc and with masses between 0.1 and 0.3
M ⊙observed during the primary mission of TESS. We find all stars consistent with a common value ofα = 1.984 ± 0.019 for the exponent of the flare frequency distribution. Using our measured stellar radial velocities and Gaia astrometry, we determine GalacticUVW space motions. We find 78% of stars are members of the Galactic thin disk, 7% belong to the thick disk, and for the remaining 15% we cannot confidently assign membership to either component. If we assume star formation has been constant in the thin disk for the past 8 Gyr, then based on the fraction that we observe to be active, we estimate the average age at which these stars transition from the saturated to the unsaturated flaring regime to be 2.4 ± 0.3 Gyr. This is consistent with the ages that we assign from Galactic kinematics: we find that stars with rotation periodP rot< 10 days have an age of 2.0 ± 1.2 Gyr, stars with 10 days <P rot≤ 90 days have an age of 5.6 ± 2.7 Gyr, and stars withP rot> 90 days have an age of 12.9 ± 3.5 Gyr. We find that the average age of stars withP rot< 10 days increases with decreasing stellar mass from 0.6 ± 0.3 Gyr (0.2–0.3M ⊙) to 2.3 ± 1.3 Gyr (0.1–0.2M ⊙).